19 research outputs found

    bLIMEy:Surrogate Prediction Explanations Beyond LIME

    Get PDF
    Surrogate explainers of black-box machine learning predictions are of paramount importance in the field of eXplainable Artificial Intelligence since they can be applied to any type of data (images, text and tabular), are model-agnostic and are post-hoc (i.e., can be retrofitted). The Local Interpretable Model-agnostic Explanations (LIME) algorithm is often mistakenly unified with a more general framework of surrogate explainers, which may lead to a belief that it is the solution to surrogate explainability. In this paper we empower the community to "build LIME yourself" (bLIMEy) by proposing a principled algorithmic framework for building custom local surrogate explainers of black-box model predictions, including LIME itself. To this end, we demonstrate how to decompose the surrogate explainers family into algorithmically independent and interoperable modules and discuss the influence of these component choices on the functional capabilities of the resulting explainer, using the example of LIME.Comment: 2019 Workshop on Human-Centric Machine Learning (HCML 2019); 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canad

    LimeOut: An Ensemble Approach To Improve Process Fairness

    Get PDF
    Artificial Intelligence and Machine Learning are becoming increasingly present in several aspects of human life, especially, those dealing with decision making. Many of these algorithmic decisions are taken without human supervision and through decision making processes that are not transparent. This raises concerns regarding the potential bias of these processes towards certain groups of society, which may entail unfair results and, possibly, violations of human rights. Dealing with such biased models is one of the major concerns to maintain the public trust. In this paper, we address the question of process or procedural fairness. More precisely, we consider the problem of making classifiers fairer by reducing their dependence on sensitive features while increasing (or, at least, maintaining) their accuracy. To achieve both, we draw inspiration from "dropout" techniques in neural based approaches, and propose a framework that relies on "feature drop-out" to tackle process fairness. We make use of "LIME Explanations" to assess a classifier's fairness and to determine the sensitive features to remove. This produces a pool of classifiers (through feature dropout) whose ensemble is shown empirically to be less dependent on sensitive features, and with improved or no impact on accuracy.Comment: 11 pages, 3 figures, 3 table

    Uncertainty in Additive Feature Attribution methods

    Full text link
    In this work, we explore various topics that fall under the umbrella of Uncertainty in post-hoc Explainable AI (XAI) methods. We in particular focus on the class of additive feature attribution explanation methods. We first describe our specifications of uncertainty and compare various statistical and recent methods to quantify the same. Next, for a particular instance, we study the relationship between a feature's attribution and its uncertainty and observe little correlation. As a result, we propose a modification in the distribution from which perturbations are sampled in LIME-based algorithms such that the important features have minimal uncertainty without an increase in computational cost. Next, while studying how the uncertainty in explanations varies across the feature space of a classifier, we observe that a fraction of instances show near-zero uncertainty. We coin the term "stable instances" for such instances and diagnose factors that make an instance stable. Next, we study how an XAI algorithm's uncertainty varies with the size and complexity of the underlying model. We observe that the more complex the model, the more inherent uncertainty is exhibited by it. As a result, we propose a measure to quantify the relative complexity of a blackbox classifier. This could be incorporated, for example, in LIME-based algorithms' sampling densities, to help different explanation algorithms achieve tighter confidence levels. Together, the above measures would have a strong impact on making XAI models relatively trustworthy for the end-user as well as aiding scientific discovery.Comment: 1

    Sum-of-Parts Models: Faithful Attributions for Groups of Features

    Full text link
    An explanation of a machine learning model is considered "faithful" if it accurately reflects the model's decision-making process. However, explanations such as feature attributions for deep learning are not guaranteed to be faithful, and can produce potentially misleading interpretations. In this work, we develop Sum-of-Parts (SOP), a class of models whose predictions come with grouped feature attributions that are faithful-by-construction. This model decomposes a prediction into an interpretable sum of scores, each of which is directly attributable to a sparse group of features. We evaluate SOP on benchmarks with standard interpretability metrics, and in a case study, we use the faithful explanations from SOP to help astrophysicists discover new knowledge about galaxy formation

    Robust Local Explanations for Healthcare Predictive Analytics: An Application to Fragility Fracture Risk Modeling

    Get PDF
    With recent advancements in data analytics, healthcare predictive analytics (HPA) is garnering growing interest among practitioners and researchers. However, it is risky to blindly accept the results and users will not accept the HPA model if transparency is not guaranteed. To address this challenge, we propose the RObust Local EXplanations (ROLEX) method, which provides robust, instance-level explanations for any HPA model. The applicability of the ROLEX method is demonstrated using the fragility fracture prediction problem. Analysis with a large real-world dataset demonstrates that our method outperforms state-of-the-art methods in terms of local fidelity. The ROLEX method is applicable to various types of HPA problems beyond the fragility fracture problem. It is applicable to any type of supervised learning model and provides fine-grained explanations that can improve understanding of the phenomenon of interest. Finally, we discuss theoretical implications of our study in light of healthcare IS, big data, and design science

    From local counterfactuals to global feature importance: efficient, robust, and model-agnostic explanations for brain connectivity networks

    Get PDF
    Background: Explainable artificial intelligence (XAI) is a technology that can enhance trust in mental state classifications by providing explanations for the reasoning behind artificial intelligence (AI) models outputs, especially for high-dimensional and highly-correlated brain signals. Feature importance and counterfactual explanations are two common approaches to generate these explanations, but both have drawbacks. While feature importance methods, such as shapley additive explanations (SHAP), can be computationally expensive and sensitive to feature correlation, counterfactual explanations only explain a single outcome instead of the entire model. Methods: To overcome these limitations, we propose a new procedure for computing global feature importance that involves aggregating local counterfactual explanations. This approach is specifically tailored to fMRI signals and is based on the hypothesis that instances close to the decision boundary and their counterfactuals mainly differ in the features identified as most important for the downstream classification task. We refer to this proposed feature importance measure as Boundary Crossing Solo Ratio (BoCSoR), since it quantifies the frequency with which a change in each feature in isolation leads to a change in classification outcome, i.e., the crossing of the model's decision boundary. Results and conclusions: Experimental results on synthetic data and real publicly available fMRI data from the Human Connect project show that the proposed BoCSoR measure is more robust to feature correlation and less computationally expensive than state-of-the-art methods. Additionally, it is equally effective in providing an explanation for the behavior of any AI model for brain signals. These properties are crucial for medical decision support systems, where many different features are often extracted from the same physiological measures and a gold standard is absent. Consequently, computing feature importance may become computationally expensive, and there may be a high probability of mutual correlation among features, leading to unreliable results from state-of-the-art XAI methods
    corecore