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Background: Explainable artificial intelligence (XAI) is a technology that can enhance trust in mental state 

classifications by providing explanations for the reasoning behind artificial intelligence (AI) models out- 

puts, especially for high-dimensional and highly-correlated brain signals. Feature importance and coun- 

terfactual explanations are two common approaches to generate these explanations, but both have draw- 

backs. While feature importance methods, such as shapley additive explanations (SHAP), can be compu- 

tationally expensive and sensitive to feature correlation, counterfactual explanations only explain a single 

outcome instead of the entire model. 

Methods: To overcome these limitations, we propose a new procedure for computing global feature im- 

portance that involves aggregating local counterfactual explanations. This approach is specifically tailored 

to fMRI signals and is based on the hypothesis that instances close to the decision boundary and their 

counterfactuals mainly differ in the features identified as most important for the downstream classifica- 

tion task. We refer to this proposed feature importance measure as Boundary Crossing Solo Ratio (BoC- 

SoR), since it quantifies the frequency with which a change in each feature in isolation leads to a change 

in classification outcome, i.e., the crossing of the model’s decision boundary. 

Results and Conclusions: Experimental results on synthetic data and real publicly available fMRI data 

from the Human Connect project show that the proposed BoCSoR measure is more robust to feature 

correlation and less computationally expensive than state-of-the-art methods. Additionally, it is equally 

effective in providing an explanation for the behavior of any AI model for brain signals. These properties 

are crucial for medical decision support systems, where many different features are often extracted from 

the same physiological measures and a gold standard is absent. Consequently, computing feature impor- 

tance may become computationally expensive, and there may be a high probability of mutual correlation 

among features, leading to unreliable results from state-of-the-art XAI methods. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Recent advances in machine learning (ML), and in particular in 

rtificial intelligence (AI), have shown great potential for a variety 

f applications in the biomedical field, including protein folding, 
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rotein design, molecular medicine [1] , as well as in the analysis 

nd classification of physiological data, including brain signals 

2,3] . However, AI models are often criticized for their black box 

ature, which means that their inner workings are not transparent 

nd are difficult to interpret. The increasing complexity of these 

odels has led to a need for explainable artificial intelligence (XAI) 

lgorithms that can provide insight into the reasoning behind the 

utput of these models [4–6] . In the context of physiological data 

nalysis and classification, especially considering brain signals, 
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AI can be particularly valuable. Brain signals are highly complex 

nd often highly correlated, which makes it challenging to extract 

eaningful features and understand the underlying physiological 

rocesses that contribute to specific patterns. XAI can provide 

aluable insights into the mechanisms underlying these patterns 

nd help researchers and clinicians better understand and interpret 

he results of physiological data analysis and classification [1] . 

XAI has recently gained significant attention as a potential tool 

or advancing neuroscience research [7–9] . XAI approaches have 

een employed to compare multi-modal brain data, behavioral and 

omputational data, as well as stimulus descriptions [10] . More re- 

ently, XAI techniques have been successfully applied to longitudi- 

ally monitor subjects affected by mild cognitive impairment [11] , 

o study factors contributing to stroke prediction [12] , to highlight 

ey features in epilepsy detection systems [13] , and to shed light 

n brain dynamics associated with the aging process [14] . These 

tudies showcase the versatility of XAI techniques in investigating 

rain signals and highlight the potential of XAI in facilitating the 

evelopment of effective and accurate diagnostic and therapeutic 

ools. 

.1. Explainable Artificial Intelligence 

In recent years, there has been a growing interest in the 

evelopment of XAI algorithms, which aim to provide clear and 

nterpretable explanations of the reasoning behind AI models’ 

redictions. XAI can help improve the transparency and trust- 

orthiness of AI models and make them more accessible to 

on-experts. To illustrate, XAI technology can help medical per- 

onnel better justify medical treatment for patients, as well as 

ake advantage of what the AI system has learned from the data 

o gain new scientific insights [15] . 

XAI approaches attach the so-called explanations for the rea- 

oning of the AI algorithm to the provided predictions, allowing 

omain experts (e.g., biomedical scientists) to validate and trust 

he algorithms in a much smoother manner [16] . This view is sup- 

orted by recent regulations on personal data processing (i.e., the 

eneral Data Protection Regulation [17] ), which include some level 

f explainability as a requirement to be met in order to employ AI 

n real-world clinical decision-making processes [18] . 

The explanations generated by XAI approaches can be charac- 

erized by different properties. First, the explanations can be local 

r global . Local explanations motivate the classification outcome of 

 given instance, while global explanations provide insight into the 

hole model. Moreover, the explanations can come in different 

orms and shapes [19] : (i) rule-based explanations approximate the 

ecision process embedded in the algorithm by associating labels 

o the thresholds of the input features [20] ; (ii) instance-based 

xplanations associate a labeled instance to some prototypes or 

ounterexamples to trigger similarity-based reasoning in the end- 

ser (e.g., the domain expert) [21] ; (iii) input-based explanations 

xplain the behavior of an AI model by grading the contribution 

f each input feature to the prediction [22] . Choosing the best 

xplanation strategy is a design choice that depends on how 

omprehensibility and faithfulness are valued within a given ap- 

lication. Typically, comprehensible (i.e., compact, unambiguous) 

xplanations are not faithful (i.e., comprehensively describing the 

I model), and vice versa [23] . 

In a medical decision process, the end-users are not AI experts, 

hus the explanation needs to be as comprehensible as possible. To 

his aim, the explanation form that can be employed are the input- 

ased (e.g., feature importance) and instance-based (e.g., counter- 

actual) [23] . 

Feature importance is one of the most widely used explana- 

ion forms, possibly due to the availability of model-agnostic ap- 

roaches that can generate a feature ranking [22] . For example, 
2 
he Shapley additive explanations (SHAP, [24] ) framework is con- 

idered a gold standard among XAI approaches due to its solid the- 

retical background and wide applicability [25] . SHAP feature im- 

ortance [26] , estimates how important a feature is by measuring 

he average marginal contribution of a feature across all the possi- 

le combinations of features. This measure is computed for every 

ata instance and then aggregated to provide a single ranking. Re- 

ently, the extensive use of SHAP has exposed its limitations, such 

s computational complexity, which grows exponentially with the 

umber of features [27] , and its sensitivity to correlation among 

eatures [28] . Unfortunately, both these conditions often occur in 

iomedical data [29] . Finally, SHAP does not provide insight into 

he behavior of the model with unseen instances [27] . Exemplarily, 

uthors in [30] employed SHAP feature importance approaches to 

rive an algorithm for generating counterfactuals by modifying the 

alue of the most important features. 

To address this issue, counterfactual explanations can be em- 

loyed. Intuitively, given a data instance i and its predicted class 

 i , a counterfactual is an instance c ’similar’ to i that has been allo-

ated to a different predicted class ( C c ! = C i ). A counterfactual ex-

lanation is based on finding that ’similar’ instance, meaning ex- 

mining the minimum change that will result in a change in the 

redicted class. Unfortunately, the definition of ’minimum change’ 

s not univocal. In some cases, it is considered the minimum num- 

er of features to change, in others, the minimum distance be- 

ween the original instance and the counterfactual instances [31] . 

 counterfactual explanation can be found by (i) using a ”brute 

orce procedure”, i.e. specifying the step size and the ranges of 

alues for each feature to be explored around the instance being 

xplained [32] ; (ii) employing a specific loss measure and solving 

n optimization problem [33] ; or (iii) adopting a heuristic search 

trategy, e.g., searching within a reference population of instances 

o be used as counterfactuals [34] . According to the results in [31] ,

he latter strategies have the smallest computational cost (i.e., one 

r two orders of magnitude) as compared to the previous ones, 

nd are often based on K-Nearest Neighbour procedures [34] . The 

ain limitation of counterfactual explanations is the fact that they 

re instance-specific, i.e. no general information about the model 

easoning as a whole is extracted [31,35] . The authors in [36] pro- 

ose a causality-based XAI approach based on probabilistic con- 

rasting counterfactuals to generate global, local, and contextual 

xplanations. However, the model requires structured knowledge, 

uch as a causal graph, and does not provide an actual feature im- 

ortance measure. The authors in [37] use a variational autoen- 

oder approach to generate local explanations for an AI approach 

y approximating the decision boundary in the neighborhood of 

n instance to be explained. Anchor [38] produces local decision 

ules that are consistent with the decision boundary. Similarly, lo- 

al surrogates [39] focuse on the decision boundary by generating 

nstances in a hypersphere around the point to be explained, which 

s not feasible for large datasets. 

.2. In this work 

In this paper, we propose a new XAI method, especially suitable 

or the analysis of brain signals. We employ the term XAI method 

o describe any process that can offer insights into how an ML 

odel processes data instances to yield classifications. In our pro- 

osed approach, the generated insights pertain to the importance 

f each feature for the ML model. The most widely used method 

or determining the feature importance is SHAP. However, the lit- 

rature reveals that SHAP can be computationally demanding, and 

ts reliability may be affected by feature correlation [28] . Our in- 

ovative approach to measuring feature importance for ML models 

hat process tabular data relies on local counterfactuals, address- 

ng these limitations. To assess the effectiveness of our proposed 
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Algorithm 1 Pseudocode of the proposed procedure to efficiently 

obtain the closest counterfactual for a given instance (i.e., f indCF ). 

Requires: 

M ⇐ trained machine learning model 

s ⇐ instance of which a counterfactual needs to be found 

class s ⇐ class of s 

class c ⇐ counterfactual class 

k ⇐ # closest neighbours of s from class c 
steps ⇐ # intermediate steps between s and its neighbours 

Procedure: 

1: explanations ⇐ emptyList() 

2: counter factuals ⇐ KN N f romClass (s, k, class c ) 

3: for each c ∈ counter factuals do 

4: points ⇐ int ermediat ePoint sBet ween (s, c, steps ) 

5: for each p ∈ points do 

6: if M.predict(p) == class c then 

7: explanations.append(p) 

8: end if 

9: end for 

10: end for 

11: explDist ⇐ computeDistance (s, explanations ) 

12: minDist ⇐ min (explDist) 

13: cl osestCF ⇐ sel ect(expl anations, expl Dist == minDist) 

14: return closestCF 
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Fig. 1. Example of the procedure for finding the minimally-different counterfactual 

for instance s , belonging to class A. The three nearest neighbors of s from the coun- 

terfactual class (i.e., class B) are considered. For each of them, two equally distant 

midpoints are generated. Among all the midpoints corresponding to a classification 

outcome equal to B, the closest is considered as the minimally-different counterfac- 

tual. 
pproach, we conducted experiments using the publicly available 

MRI dataset Human Connectome Project (HCP) [40] . Our results 

emonstrate that our approach provides interpretable explanations 

or the model’s decisions. In contrast to previous counterfactual 

AI approaches, such as those proposed by Vlassopoulos et al. 

37] , Laugel et al. [39] , and Ribeiro et al. [38] , our proposed ap-

roach provides global explanations, addressing a major limitation 

f these methods. Furthermore, our results on both synthetic and 

ublicly available real-world datasets demonstrate that our pro- 

osed feature importance measure is more robust to feature cor- 

elation and less computationally expensive than SHAP, while re- 

aining capable of providing a thorough explanation of the behav- 

or of any AI model for tabular data. 

The paper is structured as follows. Section 2 presents the pro- 

osed XAI approach. Section 3 details the experimental dataset, 

hile section 4 explains the experimental setup and the obtained 

esults. Finally, section 5 and 6 discuss the results and outline the 

onclusions, respectively. 

. The Proposed Boundary Crossing Solo Ratio (BoCSoR) XAI 

lgorithm 

To the best of our knowledge, the proposed approach (i.e., 

oCSoR) is among the few methods that integrate feature impor- 

ance and counterfactual explanations. BoCSoR is based on two 

ey assumptions: (i) feature importance indicates the most criti- 

al features for identifying a class, i.e., distinguishing it from other 

lasses, and (ii) the counterfactuals of an instance are the most 

imilar instances assigned to a different class, which lie beyond the 

ecision boundary. Our hypothesis is that by considering instances 

ear the decision boundary [37] , the boundary is more likely to be 

rossed when the most important features are modified [41] . More 

ormally, given the original class O and the counterfactual class C, 

e define B as the set of boundary instances b, as the instances 

f class O with a distance to their nearest neighbour of class C

i.e. c nn b 
) smaller than a certain percentile ( th ) of the distances ob-

ained with all the instances o of class O ( Eq. 1 ). 

 = { dist(o, c nn o ) ∀ o ∈ O } 
 = { b ∈ O, dist(b, c nn b ) < percentile (th, D ) } (1) 

Given a boundary instance b ∈ B , the corresponding minimally- 

ifferent counterfactual closestCF b is a instance recognized as class 

characterized by minimal distance from b ( Eq. 2 ). More on the 

oncept of minimality employed in our approach in Algorithm 1 . 

losestCF b ∈ C, dist(b, closestCF b ) is minimal (2) 

The feature f b 
i 

at index i is rele v ant if by substituting its value

n closestCF b with its value in b, closestCF b is classified as class O .

he importance of the feature at index i is the occurrence with 

hich f i is rele v ant considering all the boundary instances ( Eq. 3 ).

oCSoR f i 
= |{ f b i is rele v ant ∀ b ∈ B }| (3)

In the following, we present the implementation of the pro- 

osed approach via pseudo-code. For all the procedures detailed in 

his Section, the Euclidean distance is considered as the reference 

istance measure ( Eq. 4 ). In Eq. 4 , a and b are two exemplary in-

tances consisting of N features, whereas f a 
i 

and f b 
i 

are the values 

f the i th feature for a and b, respectively. 

ist(a, b) = 

√ 

N ∑ 

i =1 

( f a 
i 

− f b 
i 
) 2 (4) 

According to [31] , efficient approaches for counterfactual search 

an be based on K-Nearest Neighbor (NN) procedures. In essence, 

or the instance to be explained, the closest instances belonging 
3 
o a different class can be utilized as potential counterfactuals. In 

lgorithm 1 , the NN search is conducted using the method KN- 

fromClass (line 2) in which s denotes the instance, and k repre- 

ents the number of closest instances of class c to be found. How- 

ver, the nearest instance of another class may not correspond to 

he minimal change needed to achieve a different classification. To 

ddress this issue, midpoints are generated between each poten- 

ial counterfactual and the original instance. In Algorithm 1 this 

s accomplished via the method intermediatePointsBetween (line 4) 

hich provides a number of evenly spaced instances between s 

nd c equal to steps . We collect each midpoint identified as an 

nstance of the counterfactual class (lines 6-8 of Algorithm 1 ). 

his process is repeated for every potential counterfactual (see 

ig. 1 ). We then calculate the distance between the collected mid- 

oints and the original instance, and the closest one is selected 

s the counterfactual that minimally differs from s (lines 11-13 of 

lgorithm 1 ). In our approach, we employ the concept of ’mini- 

ality’ in a relative sense, referring to the step-wise exploration 

f the space between two instances belonging to different classes. 

his is rather than in an absolute sense, which would indicate the 

inimum distance necessary to alter the classification outcome. 

hile our approach sacrifices the guarantee of achieving an ab- 
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Algorithm 3 Pseudocode of the procedure to obtain the BoCSoR 

measure for a given decision boundary (i.e., BoCSoR ). 

Requires: 

M ⇐ trained machine learning model 

S ⇐ set of all the data instances 

class o ⇐ original class 

class c ⇐ counterfactual class 

percentileT h ⇐ threshold of the data 

k ⇐ # closest neighbours of s from class c 
steps ⇐ # intermediate steps between s and its neighbours 

Procedure: 

1: switches ⇐ emptyList() 

2: set O ⇐ sel ect(data, l abel == cl ass o ) 

3: set C ⇐ sel ect(data, l abel == cl ass c ) 

4: pairwiseDist ⇐ computeDistance (set O , set C ) 

5: th ⇐ percentile (pairwiseDist, percentileT h ) 

6: instancesT oExplain ⇐ select(set C , pairwiseDist < th ) 

7: for each s ∈ instancesT oExplain do 

8: RF ⇐ rele v ant F eat ures (M, s, k, steps, class o , class c ) 

9: switches.append(RF ) 

10: end for 

11: f eatureImportance ⇐ f requenceByF eat ure (swit ches ) 

12: return f eatureImportance 
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olute minimum distance, it substantially reduces computational 

osts, making it a more practical and favourable choice. 

After identifying the minimally different counterfactual using 

lgorithm 1 , the subsequent step involves determining the features 

hat can potentially cross the decision boundary when modified in 

solation. To accomplish this, the value of each feature of the coun- 

erfactual instance is replaced with the corresponding value from 

he original instance, thereby generating a new instance. Initially, 

he index and value of each feature for the closest counterfactual 

re collected (line 3 of Algorithm 2 ). Then, a new instance is cre-

lgorithm 2 Pseudocode of the procedure to obtain the relevant 

eature for a single instance to cross the decision boundary (i.e., 

ele v ant F eat ures ). 

equires: 

 ⇐ trained machine learning model 

 ⇐ instance of which a counterfactual needs to be found 

lass s ⇐ class of s 

lass c ⇐ counterfactual class 

 ⇐ # closest neighbours of s from class c 
teps ⇐ # intermediate steps between s and its neighbours 

rocedure: 

1: r ele v antF eaur es ⇐ emptyList() 

2: closestC F ⇐ f indC F (M, s, k, steps, class s , class c ) 

3: [ index, v alue ] ⇐ v alueChangeByF eat ure (s, closest CF ) 

4: for each i ∈ index do 

5: CF i ⇐ changeF eature (index i , v alue i ) 

6: if M.predict(CF i ) == class s then 

7: rele v ant F eat ures.append (ind ex i ) 

8: end if 

9: end for 

0: return rele v ant F eat ures 

ted by replacing the value of the feature at index i for the closest

ounterfactual instance with the value of the same feature in the 

riginal instance (line 5 of Algorithm 2 ). If this new instance yields 

 different classification outcome compared to the counterfactual 

nstance, that feature is deemed relevant (lines 6-8 of Algorithm 2 ). 

inally, the procedure outlined in Algorithm 2 gathers all relevant 

eatures for a given instance. 

Our proposed feature importance measure, dubbed Boundary 

rossing Solo Ratio (BoCSoR), is determined by the frequency at 

hich each feature is considered relevant by the procedure out- 

ined in Algorithm 2 when applied to instances close to the de- 

ision boundary. Closeness here, is defined as the inter-class dis- 

ance, i.e. the Euclidean distance ( Eq. 4 ) between the instance and 

ts nearest instance from another class. We select instances with an 

nter-class distance smaller than a given percentile among all inter- 

lass distances for the boundary instances. To find these, we first 

ompute the pairwise (Euclidean) distance between all features of 

he original and counterfactual classes (lines 2-4 of Algorithm 3 ), 

nd then select only the instances with a distance smaller than 

he given percentile (lines 5-6 of Algorithm 3 ). Finally, the rele- 

ant features ( Algorithm 2 ) for each boundary instance are aggre- 

ated (lines 7-11 of Algorithm 3 ). BoCSoR measures the frequency 

t which a single change of each feature (i.e., with other features 

nchanged) results in crossing the decision boundary. To determine 

his measure, we replace the value of a feature at a given index 

or each boundary instance with the value of the same feature in 

he original instance (line 5 of Algorithm 2 ). We then compare the 

esulting instance with the corresponding counterfactual instance 

nd consider the feature relevant if the classification outcome is 

ifferent (lines 6-8 of Algorithm 2 ). In summary, BoCSoR consid- 

rs the frequency at which each feature can result in crossing the 

ecision boundary for instances close to it ( Algorithm 3 ). 
4

We present the time complexity analysis of the afore- 

entioned procedures considering the number of instances N, the 

umber of features f , and the main parameters of the procedures, 

.e. k , steps , and percentileT h . To reduce the required number of

istance computations and ensure a quick NN search, a variety of 

ree-based data structures have been proposed. Among those, we 

mploy the so-called ball tree . According to the official scikit-learn 

ocumentation, the query time with a ball tree grows as approxi- 

ately O ( f · log (N)) , where f is the number of features and N is 

he number of instances. In Algorithm 1 , the NN search query is 

omputed k times, generating k potential counterfactuals ( O (k · f ·
og (N) ). For each one of the k potential counterfactuals, a number 

f steps midpoints are generated. Each one of those is used to pro- 

uce a classification via the ML model. It results in a total amount 

f k · steps operations with a constant complexity ( O (k · steps ) ). It

ollows the computation of the distances between the instance s 

nd the midpoints ( O (k · steps ) ) and the search for the minimum

worst case, O (k · steps ) ). Overall, Algorithm 1 results in a complex- 

ty equal to O (k · f · log (N) + 3 · k · steps ) , that can be simplified to

 (k · f · log (N) + k · steps ) . 

Algorithm 2 exploits Algorithm 1 to find the minimally- 

ifferent counterfactual. Then, it switches the values of each fea- 

ure and employs the obtained instance to compute a classifica- 

ion via the ML model. These constant complexity operations are 

epeated for each feature ( O ( f ) ). Overall, Algorithm 2 results in a

omplexity equal to O (k · f · log (N) + k · steps + f ) . 

Algorithm 3 exploits Algorithm 2 for each boundary instance of 

lass s , that is percentileT h percentage of all the instances of the 

lass. Assuming a balanced classification problem, in which each 

lass has N instances, both the pairwise distance computation and 

he selection operation result in O (N 

2 ) complexity each. Those are 

ollowed by the executions of Algorithm 2 . Thus, Algorithm 3 re- 

ults in a final complexity equal to O (2 · N 

2 + N·percentileTh (k · f ·
og (N · percentileT h ) + k · steps + f )) . 

Since the value of percentileT h is bounded, we can simplify 

he time complexity of Algorithm 3 as O (N 

2 + N · (k · f · log (N) +
 · steps + f )) . If we also consider as bounded the parameteri- 

ations k and steps (e.g. equal to 10), we can again simplify 

he time complexity, firstly as O (N 

2 + N( f · log (N) + f )) and then
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 imeComplexit y BoCSoR = O (N 

2 + N · f · log(N)) (5) 

Compared to SHAP, which has a time complexity that increases 

inearly with the number of instances and exponentially with the 

umber of features [24] , our proposed approach results in signifi- 

antly smaller time complexity. 

. Experimental Data and Setup 

.1. Synthetic Datasets 

In order to evaluate the reliability of feature importance mea- 

ures, we constructed a tabular dataset (Dataset1) with known 

eature importance, following the methodology described in [42] . 

e used the make _ classi f ication method from the Python library 

cikit-learn [43] to generate normally distributed clusters of points 

round the vertices of a hypercube defined by five features. These 

eatures were interdependent, and the dataset was contaminated 

ith noise to create a set of informative features followed by re- 

undant features, i.e., linear combinations of informative ones. The 

mount of Gaussian noise added to each redundant feature in- 

reased linearly, resulting in a data set with high feature impor- 

ance for informative features and predicted linearly decreasing 

mportance along redundant features. The data generation proce- 

ure allowed us to vary the number of features, the number of 

nformative features, and the number of instances. Further details 

n the data generation procedure can be found in [44] . 

By applying different feature importance approaches to this 

ataset, we could examine the extent to which the computed 

mportance measures aligned with the imposed importance. We 

ould also evaluate the impact of feature correlation on the reli- 

bility of feature importance computation. 

To further explore the impact of feature correlation on fea- 

ure importance measures, we created another synthetic dataset 

Dataset2). This dataset was generated using the same procedure 

s Dataset1 but with the two most important and the two least 

mportant features duplicated to replace the other four features, 

hereby introducing high correlation between the least and most 

mportant features. This allowed us to assess the effect of the cor- 

elation between features with different importance levels on the 

omputation of feature importance measures. 

The ground truth feature importance for Dataset1 and Dataset2 

oes not consist of numerical values, which renders it unsuitable 

or measuring feature importance assessment error. Nonetheless, 

he method used to generate the synthetic dataset provides a rel- 

tive measure of feature importance, comparable to other studies 

hat generate data with known feature importance [45] . Specifi- 

ally, the synthetic dataset reveals which features are replicated 

and thus most correlated) or informative (and thus most impor- 

ant) and which features become less important due to the pro- 

ressive addition of noise. However, it is impossible to measure 

ow the addition of noise may decrease feature importance in ab- 

olute terms. Despite this limitation, if two XAI approaches provide 

ifferent importance measures for the same feature, it is feasible to 

nvestigate which measure is closest to the known informativeness 

evel of the features, examine the conditions behind this difference, 

nd verify if it consistently occurs with features of varying levels of 

nformativeness. For instance, we anticipated that the average im- 

ortance measure for the top informative features should surpass 

he average importance measure for the least informative features. 

herefore, in our experimentation, we focused on groups of fea- 

ures characterized by opposite levels of importance and/or maxi- 

um correlation with other features in the dataset. Our quantita- 

ive results were aimed at exploring the relationship between the 
5 
nown relative feature importance and the importance measures 

rovided by SHAP and BoCSoR. 

.2. Real Datasets: fMRI data from HCP 

The Human Connectome Project (HCP) is a consortium of the 

ational Institutes of Health of the United States that recruited 

articipants for large-scale studies on human brain’s anatomical 

nd functional connectivity. The HCP consortium collected both 

esting state and task-evoked activities mostly from healthy sub- 

ects. So far, the largest study published is the Young Adults 

CP − 1200 which includes about 1200 healthy participants (aged 

2 − 35 y) who performed several tasks over 2 fMRI trials. In the 

resent study, to test the usability and performance of the pro- 

osed method, the analysis was performed on Social and Emo- 

ional processing task data. For all subjects, all fMRI volumes 

ere registered to a common reference space (Brainnettome, http: 

/www.brainnetome.org/ ) parcelled into 123 cortical and subcorti- 

al regions per each hemisphere (246 in total, for ROI details, see 

46] ). More specifically, the considered recognition tasks are: 

• Emotion Processing task [47] : participants watch either a fear- 

ful human face (12 different, 6 per gender, 2 trials) or a simple 

meaningless shape on a display for 18 seconds (3 seconds per 

trial) with no inter-stimulus intervals. The exact timing of stim- 

uli presentation randomly changes from subject to subject with 

a standard deviation of about 0.13 seconds across 1200 subjects 

in order to avoid habituation. 

• Social task [48] : 12 silent animated shapes (i.e., big red and 

small blue triangles) were shown on a screen during MRI ac- 

quisition and they are designed to mimic social interactions. 

Two kinds of animations are considered: ToM (3 for each trial) 

with animations eliciting mental state attributions, and RA (2 

for each trial) comprehending animations of randomly moving 

shapes. Each animation lasts 23 seconds. 

All subject-wise regions of interest (ROI) time-series were av- 

raged within each ROI and preprocessed into subject-wise, ROI- 

o-ROI adjacency matrices, which has been proven to be success- 

ul in previous studies [49–54] , calculated as Pearson’s correlation 

oefficient for each possible pair of the 246 ROIs. This approach 

enerates a database with 30135 columns and more than a thou- 

and rows ( (246 ∗ 245) / 2 )., which constituted our final dataset to 

e used for classification. 

The groups considered are listed as follows: Superior Frontal 

yrus (SFG), Middle Frontal Gyrus (MFG), Inferior Frontal Gyrus 

IFG), Orbital Gyrus (OrG), Precentral Gyrus (PrG), Paracentral 

obule (PCL), Superior Temporal Gyrus (STG), Middle Temporal 

yrus (MTG), Inferior Temporal Gyrus (ITG), Fusiform Gyrus (FuG), 

arahippocampal Gyrus (PhG), posterior Superior Temporal Sulcus 

pSTS), Superior Parietal Lobule (SPL), Inferior Parietal Lobule (IPL), 

recuneus (Pcun), Postcentral Gyrus (PoG), Insular Gyrus (INS), Cin- 

ulate Gyrus (CG), MedioVentral Occipital Cortex (MVOcC), Lateral 

ccipital Cortex (LOcC), Amygdala (Amyg), Hippocampus (Hipp), 

asal Ganglia (BG), Thalamus (Tha). 

. Experimental Results 

The proposed approach, BoCSoR, aims to provide a measure of 

eature importance. While SHAP feature importance estimates are 

idely regarded as the gold standard in XAI literature, we investi- 

ated whether BoCSoR can offer improved computational efficiency 

nd increased robustness to feature correlations - two of the main 

ssues with SHAP [28] . To do this, we employed SHAP as a base-

ine method and evaluated the level of agreement between SHAP 

nd BoCSoR. Additionally, we tested whether any disagreement be- 

ween the two methods was more likely to occur with features 

http://www.brainnetome.org/
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Table 1 

Wall-clock time [s] to compute the feature importance mea- 

sure. Average ± standard deviation. 

Data SHAP BoCSoR 

Dataset1 41.72 ± 4.95 1.28 ± 0.09 

Dataset2 39.08 ± 2.31 1.23 ± 0.15 

HCP - Emotion 2604.2 ± 148.36 185.1 ± 24.654 

HCP - Social 2618.3 ± 150.89 169.58 ± 13.16 

4

S

g  

f

l

b

t

f

s

n

a

s

M

c

i

p

a

w  

F

c

hat had high correlations with other features. As a model-agnostic 

pproach, BoCSoR can be applied to any approach that processes 

abular data. Our focus in this study was to explain the classifica- 

ion model rather than to achieve the best classification accuracy. 

herefore, we employed shallow classifiers provided by scikit-learn 

43] for all our experiments. Specifically, we used: 

• Catboost [55] , a ML approach that employs a gradient boosting 

approach to build an ensemble of decision trees; 

• Multi-layer Perceptron (MLP) [56] , a ML approach based on 

fully connected neural networks; 

• Gaussian Process Classifier (GPC) [57] , a kernel-based ML ap- 

proach (like Support Vector Machine), aimed at predicting 

highly calibrated class membership probabilities; 

It is important to note that our study was not focused on 

chieving the best possible classification performance. Therefore, 

e used the default hyperparameters provided by scikit-learn 

43] for each of these approaches. 

To ensure reliable results, all experimental evaluations were 

onducted via a 10-fold Monte Carlo cross-validation scheme. 

We also compared the wall-clock time of BoCSoR and SHAP. To 

enerate a fair comparison, we used the same number of instances 

onsidered by BoCSoR, i.e., the instances close to the decision 

oundary. To this end, we employed a Kernel Expl ainer in SHAP and 

mployed different subsampling strategies. We conducted all com- 

utations on a hardware platform with a CPU Intel Core i 7 − 6700 

t 2 . 60 − 3 . 50 GHz, 6 M cache, and 16 GB DDR3L 1600 MHz RAM. The

all-clock time for each method is reported in Table 1 . This com- 

arison provides evidence of the superiority of BoCSoR in terms of 

he wall-clock time (lower is better). 
ig. 2. Experimental results with Dataset1 and three ML approaches. Feature importance

olor of the background indicates the trend of the ground truth feature importance (from

6 
.1. Synthetic Datasets 

We computed the feature importance for Dataset1 using both 

HAP and BoCSoR with the three ML approaches listed at the be- 

inning of Section 4 ( Fig. 2 ). The solid line represents the average

eature importance measure provided by BoCSoR, while the dotted 

ine represents the average feature importance measure provided 

y SHAP. The background color signifies the ideal trend of fea- 

ure importance according to the ground truth, with the first five 

eatures considered important (green background) and the sub- 

equent features becoming less important due to the addition of 

oise (transitioning from light green to red). The resulting aver- 

ge feature importance measures display a consistent overall de- 

cending trend across different measures (BoCSoR and SHAP) and 

L approaches. 

To assess the agreement between SHAP and BoCSoR, we 

omputed Pearson’s correlation coefficient between their feature 

mportance values, as illustrated in Fig. 3 . To ensure a fair com- 

arison, we rescaled the importance values between 0 and 1 using 

 min-max normalization. All correlation coefficients obtained 

ere significant ( p < 0 . 05 ), indicating a positive and significant
 computed via BoCSoR and SHAP with 10 repetitions and averaged by feature. The 

 green to red, from high to low). 
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Fig. 3. Correlation between feature importance computed via BoCSoR and SHAP 

with Dataset1 and three ML approaches. 
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Table 2 

Classification accuracy for Emotion and Social task of the HCP 

data. Average % ± standard deviation. 

Task GPC MLP Catboost 

Emotion 64.36 ± 2.14 70.32 ± 3.72 73.29 ± 2.050 

Social 62.14 ± 2.63 81.71 ± 1.90 80.05 ± 2.553 
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orrelation between BoCSoR and SHAP. This result was consistent 

cross all three ML approaches used in our study. 

However, while there is a high correlation between BoCSoR and 

HAP importance values, discrepancies can occur in some cases. To 

nvestigate the impact of feature correlation on these differences, 

e calculated the maximum correlation ( MC) between one feature 

nd any other feature in the dataset. Subsequently, we computed 

he MC for the five most similar and the five most dissimilar fea- 

ures in terms of importance for both BoCSoR and SHAP, and we 

escaled the resulting values using a min-max procedure. The vio- 

in plots of the MC values obtained for each ML approach are pre- 

ented in Fig. 4 . Our results demonstrate that the group of fea- 

ures where SHAP and BoCSoR differ the most is characterized by 

 higher MC, indicating a stronger correlation with other features 

n the dataset. This finding is consistent across all three ML ap- 

roaches employed in our study. 

For Dataset2, we computed the feature importance using both 

HAP and BoCSoR, as shown in Fig. 5 . The solid and dotted lines in

he figure represent the average feature importance measure pro- 

ided by BoCSoR and SHAP, respectively. We also added a colored 

ackground to the figure to highlight the groups of highly corre- 

ated features, with blue indicating important and replicated fea- 

ures, and orange indicating unimportant and replicated features. 

ompared to SHAP, BoCSoR exhibits greater importance values 

or informative features (blue background) that are replicated and 
herefore correlated. This behavior is consistent across all three ML o

ig. 4. Experimental results on Dataset1 with three ML approaches. Violin plot of the max

aving the most similar normalized value for SHAP and BOCSOR, and the most dissimilar

7 
pproaches, suggesting the robustness of BoCSoR to feature corre- 

ation. Furthermore, the figure demonstrates that BoCSoR displays 

 more stable behavior while measuring the importance of infor- 

ative and replicated features, except for Catboost. These findings 

onfirm the consistency and effectiveness of BoCSoR in measuring 

eature importance for replicated and correlated features. 

We assessed the agreement between SHAP and BoCSoR in Fig. 6 

nd obtained results similar to those obtained for Dataset1. 

Finally, we grouped replicated features based on their maxi- 

um and minimum importance and compared the difference be- 

ween SHAP and BoCSoR for each group. Fig. 7 shows that, re- 

ardless of the ML approach used, BoCSoR provides, on average, 

igher feature importance for important but highly correlated fea- 

ures (i.e., the median of their difference is > 0 ), and lower feature

mportance for less important but highly correlated features (i.e., 

he median of their difference is < = 0 ). 

.2. Real Datasets: fMRI data from HCP 

To classify emotional states from the HCP data, we employed 

he three ML approaches introduced at the beginning of Section 4 . 

able 2 presents the accuracy scores obtained using a Monte Carlo 

0 cross-fold validation schema. 

Catboost and MLP achieved greater average accuracy compared 

o GPC, with an increase in accuracy of between 5 and 10 per- 

ent. When considering standard deviation, Catboost and MLP had 

oughly comparable accuracy for the Social task, while for the 

motion task, Catboost outperformed MLP in terms of accuracy. 

hus, we employ Catboost for further experimentation on the HCP 

ata, as overall it appears to be the most accurate. 

The steps parameter in BoCSoR determines the granularity of 

he counterfactual search around the decision boundary. Opting for 

 low value for steps may result in faster counterfactual searches 

ut poorer space exploration, and consequently, fewer counterfac- 

uals. To investigate the effect of different parameterizations on the 

umber of generated counterfactuals, we conducted experiments 

sing steps values of 2, 3, 5, 10, and 20 with the HCP data. Table 3

resents the results obtained from these experiments. 

Based on the results in Table 3 , the percentage of instances 

rom which BoCSoR can generate at least one counterfactual ex- 

ibits a sublinear increase as the steps parameter increases. For 

ur subsequent experiments, a steps parameterization of 10 can be 
imum correlation between one feature and all the others considering the 5 features 

 normalized value for SHAP and BOCSOR. 
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Fig. 5. Experimental results with Dataset2 and three ML approaches. The feature importance computed via BoCSoR and SHAP with 10 repetitions and averaged by feature. 

The color of the background indicates the groups of highly correlated features (blue if important and replicated, orange if unimportant and replicated). 

Fig. 6. Correlation between the feature importance computed via BoCSoR and SHAP 

on Dataset2 with three ML approaches. 
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Table 3 

Percentage of of boundary instances from which BoCSoR can generate a coun- 

terfactual. Emotion and Social tasks with the HCP data. CatBoost classifier. Av- 

erage % ± standard deviation. 

Steps Emotion Social 

2 53.45 ± 2.73 38.51 ± 4.65 

3 64.29 ± 3.47 57.02 ± 3.41 

5 76.31 ± 4.91 73.10 ± 3.96 

10 87.98 ± 1.40 85.65 ± 3.40 

20 93.51 ± 1.74 95.42 ± 1.80 
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onsidered a good trade-off, as the improvement in the percent- 

ge of instances that result in the generation of a counterfactual 

ppears to plateau beyond this value. 

We evaluated BoCSoR in terms of agreement with SHAP as 

easured through the Pearson correlation coefficient on the HCP 

ata using Catboost as classifier. The results obtained are presented 

n Fig. 8 via violin plots. 
8 
Our findings show that BoCSoR and SHAP are significantly and 

ositively correlated, but partially disagree. 

We tested if the behavior occurring with Dataset1 and Dataset2 

as confirmed with the HCP data. Thus, we rescaled the values of 

OCSOR and SHAP via a min-max procedure to make them com- 

arable. Then, the five features characterized by the most similar 

eature importance values according to SHAP and BOCSOR were 

onsidered, together with the five most dissimilar ones. For each 

eature, the MC is computed. According to our results, BoCSoR and 

HAP disagreed on the ranking of the most correlated features in 

he Emotion Processing task. The graphical representation of the 

orresponding MC values is presented in Fig. 9 . 

Our results show that there is a disagreement in the ranking 

f the most correlated features between BoCSoR and SHAP for the 

motion task data. Specifically, the 95% confidence interval of the 

aximum correlation for the features with the highest disagree- 

ent (agreement) between SHAP and BoCSoR is higher (smaller) 

han the average correlation of all features. In contrast, the data 

rom the HCP-Social task exhibits partial overlap between the 95% 

onfidence intervals of the maximum correlation for the features 
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Fig. 7. Experimental results on Dataset2 with three ML approaches. Violin plot of the difference between the feature importance measure computed via SHAP and BOCSOR. 

The difference is presented for the most and the less important features in the dataset when those are replicated (and so correlated). 

Fig. 8. Experimental results on HCP-Emotion Processing. Violin plot of the correla- 

tion between BOCSOR and SHAP obtained via 10 repetitions with the 2 considered 

tasks. All the correlation values shown below correspond to p-values lower than 

0.05. 
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ig. 9. Experimental results on HCP-Emotion Processing. Violin plot of the maximum co

ave the most similar normalized value for SHAP and BOCSOR, and the 5 most dissimila

aximum correlation considering all the features in the data. 

9 
ith the highest disagreement and agreement between SHAP and 

oCSoR. 

We further analyzed the importance matrices as adjacency 

tructures, as shown in Fig. 10 (left), and found that for the Emo- 

ion Processing task data, several regions of the temporal and oc- 

ipital lobes have high importance levels. Previous research has es- 

ablished that visual cortices (LOcC and MVOcC) in the occipital 

obe process visual information, while the temporal associative ar- 

as (ITG and FuG) from the fusiform gyrus are responsible for pro- 

essing the emotional meaning of objects, particularly faces [58] . 

Similarly, for the HCP-Social task data, we observed consistent 

vidence in the functional connectivity of the evoked activity, as 

llustrated in Fig. 10 (right). The fusiform gyrus appears to have a 

entral role (highest node degree) in connecting with the cingulate 

yrus (CG). The Basal Ganglia (BG) and the visual cortex (MVOcC) 

re linked, indicating the cooperation between the emotion and 

ognition regions and a visual area. Additionally, the BG is asso- 

iated with a multisensory association cortex (STG), and regions 

edicated to attention and visuospatial perception (SPL) and audio- 

isual emotional processing (MTG) are also linked. Furthermore, a 

isual cortex (MVOcC) and the somatosensory cortex, which repre- 

ents body sensation information (PoG), also have high importance 

alues. 
rrelation between one feature and all the others considering the 5 features that 

r normalized values for SHAP and BOCSOR. The purple line indicates the average 
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Fig. 10. Circular plots expressing the functional connections between macroregions in the Emotion (Left) and Social (Right) HCP tasks. Green shade indicates the node degree 

and red shades represent the connection strength. In order to emphasize the most relevant functional connections, just the 5 top-most important are displayed. 
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. Discussion 

This study presents a novel XAI methodology, BoCSoR, which is 

mployed to elucidate the classifications provided by various ML 

pproaches on synthetic and fMRI benchmark datasets. BoCSoR of- 

ers a global measure of feature importance based on local counter- 

actuals, showcasing its reliability, resilience to feature correlation, 

nd computational efficiency in comparison to other state-of-the- 

rt feature importance measures such as SHAP. Overall, this work 

ontributes to the advancement of the XAI field by providing a 

ew tool for understanding and interpreting the decisions made by 

L models, which can have significant implications across a broad 

ange of applications. In this study, BoCSoR explained the classifi- 

ations provided by three distinct ML approaches (CatBoost, Multi- 

ayer Perceptron, and Gaussian Process Classifier) on two synthetic 

atasets and two fMRI benchmark datasets. By utilizing only local 

ounterfactuals, BoCSoR offers a global measure of feature impor- 

ance. Our experiments demonstrate that it is a reliable and robust 

ethod for feature importance assessment, even when faced with 

orrelated features. In comparison to other state-of-the-art feature 

mportance measures, such as SHAP, BoCSoR is considerably more 

omputationally efficient. 

These properties are of importance for all XAI applications, es- 

ecially for those addressing medical decision support systems 

29] . Indeed, given the wide variety of features that can be ex- 

racted from the same physiological measures and the absence of 

 gold standard, it is difficult to determine the optimal subset of 

eatures to consider for a given analysis. To avoid losing informa- 

ion, many different features are often considered [59] , which are 

ighly likely to have some degree of mutual correlation, possibly 

ampering the reliability of SHAP and similar approaches [60,61] . 

BoCSoR employs a model-agnostic, instance-based, and exoge- 

ous XAI counterfactual approach. This means it can be used to 

xplain any classification approach for tabular data. At the same 

ime, BoCSoR does provide global feature importance as an expla- 

ation form. Thus, BoCSoR belongs to a novel thread in the XAI 

iterature, in which different explanation strategies are combined 

o generate new and better ones [41] . 

If compared to other approaches able to combine feature impor- 

ance and counterfactual explanations, BoCSoR (i) provides global 

eature importance [37–39] , (ii) can handle data with hundreds of 

eatures [39] , and (iii) does not rely on predetermined structured 

nowledge [36] . 

The presented experimental activities was aimed at answering 

hree research questions. 
10 
First, can BoCSoR be considered reliable as a measure of feature 

mportance? The relative nature of the ground truth for feature im- 

ortance allows us to make qualitative considerations, thus val- 

dating the trend of the feature importance measure presented 

n this study. As seen in Fig. 2 , BoCSoR displays fewer abrupt 

rops in importance than SHAP, particularly with GPC and Cat- 

oost, which is expected given that noise within the data is incre- 

entally added from the 6 th to the 15 th feature. Lastly, assuming 

HAP as the baseline measure, the correlation between SHAP and 

he proposed measure ( Figs. 3, 6 and 8 ), verifies that BoCSoR ef- 

ectively captures feature importance across all the ML approaches 

tilized. 

Second, does BoCSoR address the main weaknesses of SHAP? That 

s, does it offer lower computational cost and less sensitivity to fea- 

ures’ correlation? From our experimental results, BoCSoR results 

n a computational cost that is an order of magnitude smaller as 

ompared to SHAP, for both synthetic and HCP data. Furthermore, 

t is apparent in all the analyses that the difference between fea- 

ure importance calculated using BoCSoR and SHAP is related to 

he correlation between the features. Features exhibiting high cor- 

elation with others correspond to the largest differences in SHAP 

s BoCSoR feature importance (see Figs. 4, 7 and 9 ). This trend re- 

ains consistent for the two synthetic datasets, irrespective of the 

L approach employed. Yet, this behavior does not occur with the 

CP data for the Social task, which is also the task with which 

he model performs the worst. BoCSoR’s robustness to feature cor- 

elation is also evident from a qualitative analysis of the results 

isplayed in Fig. 5 . For all three ML approaches considered, BoC- 

oR yields a higher average importance measure for informative 

eatures (blue background) despite being replicated (and thus cor- 

elated), and this behavior is consistent across all three ML ap- 

roaches. On the other hand, for the group of replicated non- 

nformative features (orange background), the difference between 

oCSoR and SHAP is not qualitatively apparent but is still quanti- 

atively confirmed by the results in Fig. 7 . Lastly, except for Cat- 

oost, BoCSoR exhibits less fluctuating behavior while measuring 

he importance of informative and replicated features, which sub- 

tantiates its consistency. 

Third, can BoCSoR be employed to extract knowledge from the 

rained AI model? The prominent connections highlighted by 

ur method seem coherent with the most salient functional 

onnections reported in the literature for the HCP emotional 

40,62,63] and social tasks [40,64,65] . Indeed, the emotional task, 

uilt over a sequence of contrasts between human faces express- 

ng strong emotion (fear, panic, anger, etc.) and simple emotionless 
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bject shapes, is known to recruit both cortical visual areas and 

ace emotion recognition regions, in accordance with the connec- 

ions we found with BoCSoR. Similarly, the social task evokes both 

otor, somatosensory, and associative cortical regions and these 

ere highlighted by BoCSoR importance rating. Therefore, BoCSoR 

ppears to identify the most salient functional connections which 

re expected to be most active in the HCP cognitive tasks analyzed 

n this paper. 

. Conclusion 

We have introduced a new measure of global feature impor- 

ance, namely BoCSoR. BoCSoR utilizes local counterfactuals ob- 

ained from instances close to the decision boundary of a classi- 

er to determine which features, if modified, are most likely to 

esult in a change of classification. Our experiments show that 

oCSoR outperforms SHAP, which is considered the gold stan- 

ard for feature importance in the literature. BoCSoR is more reli- 

ble, less sensitive to feature correlation, and less computationally 

xpensive. 

The robustness of BoCSoR to the correlation among features 

akes it particularly suitable for the analysis of physiological data, 

here a high degree of correlation is expected between multi- 

omain signals collected from the same subject. This is especially 

elevant in partial (i.e., ROI-wise) brain data, making our approach 

n excellent candidate for any whole-brain neuroimaging or neu- 

omonitoring study. 

To maintain low computational complexity (i.e., an order of 

agnitude less wall-clock time compared to SHAP), the coun- 

erfactual search utilized in BoCSoR is based on a linear search 

tarting from the neighborhood of instances close to the decision 

oundary. However, this approach does not guarantee the mini- 

al distance between the instance and the obtained counterfac- 

ual, nor does it guarantee the best approximation of the decision 

oundary. 

On the other hand, modifying the approach for generating 

ounterfactuals could influence the feature importance measure- 

ent. Given the way BoCSoR generates feature importance, two 

roperties of counterfactuals can have a substantial impact: simi- 

arity and sparsity [31] . The similarity of a counterfactual approach 

nsures the smallest possible distance between an instance and 

ts counterfactual [31] . As demonstrated in our experimentation, 

 more fine-grained search around the decision boundary can 

uarantee an adequate number of counterfactuals to derive the 

eature importance. The sparsity of a counterfactual approach 

nsures that there is the lowest number of modified features 

etween an instance and its counterfactual [31] . If employed by 

oCSoR, this may result in fewer relevant features per decision 

oundary instance (Algorithm 2), and consequently, a feature 

mportance measure skewed towards a few features. However, 

ccording to experimentation in [31] , approaches that offer better 

imilarity, such as CBCE [66] , and better sparsity, like DiCE [33] , 

re up to three orders of magnitude more computationally expen- 

ive than brute-force approaches (i.e., the one used in BoCSoR). 

onetheless, the growing literature on counterfactual explanation 

rocedures provides more sophisticated approaches that can 

trike a better balance between decision boundary approxima- 

ion and computational cost. Future research will explore these 

irections. 

In summary, the proposed method, BoCSoR, offers an efficient 

nd reliable means of identifying the most important features for 

lassification in the context of physiological data analysis. We be- 

ieve that this approach will prove its usefulness in various neu- 

oimaging studies, where the identification of critical features is 

rucial for the development of accurate and interpretable diagnos- 

ic tools. 
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