4,040 research outputs found

    Defensive forecasting for optimal prediction with expert advice

    Get PDF
    The method of defensive forecasting is applied to the problem of prediction with expert advice for binary outcomes. It turns out that defensive forecasting is not only competitive with the Aggregating Algorithm but also handles the case of "second-guessing" experts, whose advice depends on the learner's prediction; this paper assumes that the dependence on the learner's prediction is continuous.Comment: 14 page

    Prediction with Expert Advice under Discounted Loss

    Full text link
    We study prediction with expert advice in the setting where the losses are accumulated with some discounting---the impact of old losses may gradually vanish. We generalize the Aggregating Algorithm and the Aggregating Algorithm for Regression to this case, propose a suitable new variant of exponential weights algorithm, and prove respective loss bounds.Comment: 26 pages; expanded (2 remarks -> theorems), some misprints correcte

    Competitive on-line learning with a convex loss function

    Get PDF
    We consider the problem of sequential decision making under uncertainty in which the loss caused by a decision depends on the following binary observation. In competitive on-line learning, the goal is to design decision algorithms that are almost as good as the best decision rules in a wide benchmark class, without making any assumptions about the way the observations are generated. However, standard algorithms in this area can only deal with finite-dimensional (often countable) benchmark classes. In this paper we give similar results for decision rules ranging over an arbitrary reproducing kernel Hilbert space. For example, it is shown that for a wide class of loss functions (including the standard square, absolute, and log loss functions) the average loss of the master algorithm, over the first NN observations, does not exceed the average loss of the best decision rule with a bounded norm plus O(N−1/2)O(N^{-1/2}). Our proof technique is very different from the standard ones and is based on recent results about defensive forecasting. Given the probabilities produced by a defensive forecasting algorithm, which are known to be well calibrated and to have good resolution in the long run, we use the expected loss minimization principle to find a suitable decision.Comment: 26 page

    Second-order Quantile Methods for Experts and Combinatorial Games

    Get PDF
    We aim to design strategies for sequential decision making that adjust to the difficulty of the learning problem. We study this question both in the setting of prediction with expert advice, and for more general combinatorial decision tasks. We are not satisfied with just guaranteeing minimax regret rates, but we want our algorithms to perform significantly better on easy data. Two popular ways to formalize such adaptivity are second-order regret bounds and quantile bounds. The underlying notions of 'easy data', which may be paraphrased as "the learning problem has small variance" and "multiple decisions are useful", are synergetic. But even though there are sophisticated algorithms that exploit one of the two, no existing algorithm is able to adapt to both. In this paper we outline a new method for obtaining such adaptive algorithms, based on a potential function that aggregates a range of learning rates (which are essential tuning parameters). By choosing the right prior we construct efficient algorithms and show that they reap both benefits by proving the first bounds that are both second-order and incorporate quantiles
    • …
    corecore