216 research outputs found

    A survey of IoT security based on a layered architecture of sensing and data analysis

    Get PDF
    The Internet of Things (IoT) is leading today’s digital transformation. Relying on a combination of technologies, protocols, and devices such as wireless sensors and newly developed wearable and implanted sensors, IoT is changing every aspect of daily life, especially recent applications in digital healthcare. IoT incorporates various kinds of hardware, communication protocols, and services. This IoT diversity can be viewed as a double-edged sword that provides comfort to users but can lead also to a large number of security threats and attacks. In this survey paper, a new compacted and optimized architecture for IoT is proposed based on five layers. Likewise, we propose a new classification of security threats and attacks based on new IoT architecture. The IoT architecture involves a physical perception layer, a network and protocol layer, a transport layer, an application layer, and a data and cloud services layer. First, the physical sensing layer incorporates the basic hardware used by IoT. Second, we highlight the various network and protocol technologies employed by IoT, and review the security threats and solutions. Transport protocols are exhibited and the security threats against them are discussed while providing common solutions. Then, the application layer involves application protocols and lightweight encryption algorithms for IoT. Finally, in the data and cloud services layer, the main important security features of IoT cloud platforms are addressed, involving confidentiality, integrity, authorization, authentication, and encryption protocols. The paper is concluded by presenting the open research issues and future directions towards securing IoT, including the lack of standardized lightweight encryption algorithms, the use of machine-learning algorithms to enhance security and the related challenges, the use of Blockchain to address security challenges in IoT, and the implications of IoT deployment in 5G and beyond

    Secure data sharing and analysis in cloud-based energy management systems

    Get PDF
    Analysing data acquired from one or more buildings (through specialist sensors, energy generation capability such as PV panels or smart meters) via a cloud-based Local Energy Management System (LEMS) is increasingly gaining in popularity. In a LEMS, various smart devices within a building are monitored and/or controlled to either investigate energy usage trends within a building, or to investigate mechanisms to reduce total energy demand. However, whenever we are connecting externally monitored/controlled smart devices there are security and privacy concerns. We describe the architecture and components of a LEMS and provide a survey of security and privacy concerns associated with data acquisition and control within a LEMS. Our scenarios specifically focus on the integration of Electric Vehicles (EV) and Energy Storage Units (ESU) at the building premises, to identify how EVs/ESUs can be used to store energy and reduce the electricity costs of the building. We review security strategies and identify potential security attacks that could be carried out on such a system, while exploring vulnerable points in the system. Additionally, we will systematically categorize each vulnerability and look at potential attacks exploiting that vulnerability for LEMS. Finally, we will evaluate current counter measures used against these attacks and suggest possible mitigation strategies

    An Empirical Analysis of Cyber Deception Systems

    Get PDF

    Security Assessment of Select Computer Systems under Distributed Denial of Service Attacks Performed by Botnets

    Get PDF
    With the passage of time Internet connectivity has been found on more electronic devices than in previous decades. This continuous development may be perceived as a double-edged sword. While the world becomes more Internet-connected and quality of life increases, the lack of proper security protocols in some of these electronic devices permits illegitimate parties to take control of them for their own malicious purposes. This thesis studies the impact of compromised Internet-connected devices on commonly used server operating systems: Microsoft’s Windows Server 2012 R2 Datacenter, Windows Server 2016 Datacenter, and Apple’s macOS 10.13.6 High Sierra deployed on Apple’s Mac Pro Server (Mac Pro Mid2010). Their performance under prevalent Distributed Denial of Service Attacks will be evaluated at equal attack traffic loads while utilizing three networks of simulated botnets. While the server was under attack connection rate, network traffic, processor utilization, processor temperature, and memory utilization were evaluated for computer systems under consideration

    Edge Learning for 6G-enabled Internet of Things: A Comprehensive Survey of Vulnerabilities, Datasets, and Defenses

    Full text link
    The ongoing deployment of the fifth generation (5G) wireless networks constantly reveals limitations concerning its original concept as a key driver of Internet of Everything (IoE) applications. These 5G challenges are behind worldwide efforts to enable future networks, such as sixth generation (6G) networks, to efficiently support sophisticated applications ranging from autonomous driving capabilities to the Metaverse. Edge learning is a new and powerful approach to training models across distributed clients while protecting the privacy of their data. This approach is expected to be embedded within future network infrastructures, including 6G, to solve challenging problems such as resource management and behavior prediction. This survey article provides a holistic review of the most recent research focused on edge learning vulnerabilities and defenses for 6G-enabled IoT. We summarize the existing surveys on machine learning for 6G IoT security and machine learning-associated threats in three different learning modes: centralized, federated, and distributed. Then, we provide an overview of enabling emerging technologies for 6G IoT intelligence. Moreover, we provide a holistic survey of existing research on attacks against machine learning and classify threat models into eight categories, including backdoor attacks, adversarial examples, combined attacks, poisoning attacks, Sybil attacks, byzantine attacks, inference attacks, and dropping attacks. In addition, we provide a comprehensive and detailed taxonomy and a side-by-side comparison of the state-of-the-art defense methods against edge learning vulnerabilities. Finally, as new attacks and defense technologies are realized, new research and future overall prospects for 6G-enabled IoT are discussed

    Cross Domain IW Threats to SOF Maritime Missions: Implications for U.S. SOF

    Get PDF
    As cyber vulnerabilities proliferate with the expansion of connected devices, wherein security is often forsaken for ease of use, Special Operations Forces (SOF) cannot escape the obvious, massive risk that they are assuming by incorporating emerging technologies into their toolkits. This is especially true in the maritime sector where SOF operates nearshore in littoral zones. As SOF—in support to the U.S. Navy— increasingly operate in these contested maritime environments, they will gradually encounter more hostile actors looking to exploit digital vulnerabilities. As such, this monograph comes at a perfect time as the world becomes more interconnected but also more vulnerable
    • …
    corecore