5 research outputs found

    Membership Leakage in Label-Only Exposures

    Full text link
    Machine learning (ML) has been widely adopted in various privacy-critical applications, e.g., face recognition and medical image analysis. However, recent research has shown that ML models are vulnerable to attacks against their training data. Membership inference is one major attack in this domain: Given a data sample and model, an adversary aims to determine whether the sample is part of the model's training set. Existing membership inference attacks leverage the confidence scores returned by the model as their inputs (score-based attacks). However, these attacks can be easily mitigated if the model only exposes the predicted label, i.e., the final model decision. In this paper, we propose decision-based membership inference attacks and demonstrate that label-only exposures are also vulnerable to membership leakage. In particular, we develop two types of decision-based attacks, namely transfer-attack and boundary-attack. Empirical evaluation shows that our decision-based attacks can achieve remarkable performance, and even outperform the previous score-based attacks. We further present new insights on the success of membership inference based on quantitative and qualitative analysis, i.e., member samples of a model are more distant to the model's decision boundary than non-member samples. Finally, we evaluate multiple defense mechanisms against our decision-based attacks and show that our two types of attacks can bypass most of these defenses

    Preserving data privacy in machine learning systems

    Get PDF
    peer reviewedThe wide adoption of Machine Learning to solve a large set of real-life problems came with the need to collect and process large volumes of data, some of which are considered personal and sensitive, raising serious concerns about data protection. Privacy-enhancing technologies (PETs) are often indicated as a solution to protect personal data and to achieve a general trustworthiness as required by current EU regulations on data protection and AI. However, an off-the-shelf application of PETs is insufficient to ensure a high-quality of data protection, which one needs to understand. This work systematically discusses the risks against data protection in modern Machine Learning systems taking the original perspective of the data owners, who are those who hold the various data sets, data models, or both, throughout the machine learning life cycle and considering the different Machine Learning architectures. It argues that the origin of the threats, the risks against the data, and the level of protection offered by PETs depend on the data processing phase, the role of the parties involved, and the architecture where the machine learning systems are deployed. By offering a framework in which to discuss privacy and confidentiality risks for data owners and by identifying and assessing privacy-preserving countermeasures for machine learning, this work could facilitate the discussion about compliance with EU regulations and directives. We discuss current challenges and research questions that are still unsolved in the field. In this respect, this paper provides researchers and developers working on machine learning with a comprehensive body of knowledge to let them advance in the science of data protection in machine learning field as well as in closely related fields such as Artificial Intelligence
    corecore