49 research outputs found

    The Odds are Odd: A Statistical Test for Detecting Adversarial Examples

    Full text link
    We investigate conditions under which test statistics exist that can reliably detect examples, which have been adversarially manipulated in a white-box attack. These statistics can be easily computed and calibrated by randomly corrupting inputs. They exploit certain anomalies that adversarial attacks introduce, in particular if they follow the paradigm of choosing perturbations optimally under p-norm constraints. Access to the log-odds is the only requirement to defend models. We justify our approach empirically, but also provide conditions under which detectability via the suggested test statistics is guaranteed to be effective. In our experiments, we show that it is even possible to correct test time predictions for adversarial attacks with high accuracy

    Beware the Black-Box: on the Robustness of Recent Defenses to Adversarial Examples

    Get PDF
    Many defenses have recently been proposed at venues like NIPS, ICML, ICLR and CVPR. These defenses are mainly focused on mitigating white-box attacks. They do not properly examine black-box attacks. In this paper, we expand upon the analysis of these defenses to include adaptive black-box adversaries. Our evaluation is done on nine defenses including Barrage of Random Transforms, ComDefend, Ensemble Diversity, Feature Distillation, The Odds are Odd, Error Correcting Codes, Distribution Classifier Defense, K-Winner Take All and Buffer Zones. Our investigation is done using two black-box adversarial models and six widely studied adversarial attacks for CIFAR-10 and Fashion-MNIST datasets. Our analyses show most recent defenses (7 out of 9) provide only marginal improvements in security (<25%<25\%), as compared to undefended networks. For every defense, we also show the relationship between the amount of data the adversary has at their disposal, and the effectiveness of adaptive black-box attacks. Overall, our results paint a clear picture: defenses need both thorough white-box and black-box analyses to be considered secure. We provide this large scale study and analyses to motivate the field to move towards the development of more robust black-box defenses

    Masked Language Model Based Textual Adversarial Example Detection

    Full text link
    Adversarial attacks are a serious threat to the reliable deployment of machine learning models in safety-critical applications. They can misguide current models to predict incorrectly by slightly modifying the inputs. Recently, substantial work has shown that adversarial examples tend to deviate from the underlying data manifold of normal examples, whereas pre-trained masked language models can fit the manifold of normal NLP data. To explore how to use the masked language model in adversarial detection, we propose a novel textual adversarial example detection method, namely Masked Language Model-based Detection (MLMD), which can produce clearly distinguishable signals between normal examples and adversarial examples by exploring the changes in manifolds induced by the masked language model. MLMD features a plug and play usage (i.e., no need to retrain the victim model) for adversarial defense and it is agnostic to classification tasks, victim model's architectures, and to-be-defended attack methods. We evaluate MLMD on various benchmark textual datasets, widely studied machine learning models, and state-of-the-art (SOTA) adversarial attacks (in total 3∗4∗4=483*4*4 = 48 settings). Experimental results show that MLMD can achieve strong performance, with detection accuracy up to 0.984, 0.967, and 0.901 on AG-NEWS, IMDB, and SST-2 datasets, respectively. Additionally, MLMD is superior, or at least comparable to, the SOTA detection defenses in detection accuracy and F1 score. Among many defenses based on the off-manifold assumption of adversarial examples, this work offers a new angle for capturing the manifold change. The code for this work is openly accessible at \url{https://github.com/mlmddetection/MLMDdetection}.Comment: 13 pages,3 figure

    Bit Error Robustness for Energy-Efficient {DNN} Accelerators

    Get PDF
    Deep neural network (DNN) accelerators received considerable attention in past years due to saved energy compared to mainstream hardware. Low-voltage operation of DNN accelerators allows to further reduce energy consumption significantly, however, causes bit-level failures in the memory storing the quantized DNN weights. In this paper, we show that a combination of robust fixed-point quantization, weight clipping, and random bit error training (RandBET) improves robustness against random bit errors in (quantized) DNN weights significantly. This leads to high energy savings from both low-voltage operation as well as low-precision quantization. Our approach generalizes across operating voltages and accelerators, as demonstrated on bit errors from profiled SRAM arrays. We also discuss why weight clipping alone is already a quite effective way to achieve robustness against bit errors. Moreover, we specifically discuss the involved trade-offs regarding accuracy, robustness and precision: Without losing more than 1% in accuracy compared to a normally trained 8-bit DNN, we can reduce energy consumption on CIFAR-10 by 20%. Higher energy savings of, e.g., 30%, are possible at the cost of 2.5% accuracy, even for 4-bit DNNs
    corecore