372 research outputs found

    書き換え可能なゲートアレイを用いた無作為抽出法に基づく実時間画像処理に関する研究

    Get PDF
    長崎大学学位論文 学位記番号:博(工)甲第53号 学位授与年月日:平成30年3月20日Nagasaki University (長崎大学)課程博

    Mapping adaptive particle filters to heterogeneous reconfigurable systems

    Get PDF
    This article presents an approach for mapping real-time applications based on particle filters (PFs) to heterogeneous reconfigurable systems, which typically consist of multiple FPGAs and CPUs. A method is proposed to adapt the number of particles dynamically and to utilise runtime reconfigurability of FPGAs for reduced power and energy consumption. A data compression scheme is employed to reduce communication overhead between FPGAs and CPUs. A mobile robot localisation and tracking application is developed to illustrate our approach. Experimental results show that the proposed adaptive PF can reduce up to 99% of computation time. Using runtime reconfiguration, we achieve a 25% to 34% reduction in idle power. A 1U system with four FPGAs is up to 169 times faster than a single-core CPU and 41 times faster than a 1U CPU server with 12 cores. It is also estimated to be 3 times faster than a system with four GPUs

    Accelerated Charged Particle Tracking with Graph Neural Networks on FPGAs

    Full text link
    We develop and study FPGA implementations of algorithms for charged particle tracking based on graph neural networks. The two complementary FPGA designs are based on OpenCL, a framework for writing programs that execute across heterogeneous platforms, and hls4ml, a high-level-synthesis-based compiler for neural network to firmware conversion. We evaluate and compare the resource usage, latency, and tracking performance of our implementations based on a benchmark dataset. We find a considerable speedup over CPU-based execution is possible, potentially enabling such algorithms to be used effectively in future computing workflows and the FPGA-based Level-1 trigger at the CERN Large Hadron Collider.Comment: 8 pages, 4 figures, To appear in Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020
    corecore