702 research outputs found

    Hybrid Precoding for Multiuser Millimeter Wave Massive MIMO Systems : A Deep Learning Approach

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In multi-user millimeter wave (mmWave) multiple-input-multiple-output (MIMO) systems, hybrid precoding is a crucial task to lower the complexity and cost while achieving a sufficient sum-rate. Previous works on hybrid precoding were usually based on optimization or greedy approaches. These methods either provide higher complexity or have sub-optimum performance. Moreover, the performance of these methods mostly relies on the quality of the channel data. In this work, we propose a deep learning (DL) framework to improve the performance and provide less computation time as compared to conventional techniques. In fact, we design a convolutional neural network for MIMO (CNN-MIMO) that accepts as input an imperfect channel matrix and gives the analog precoder and combiners at the output. The procedure includes two main stages. First, we develop an exhaustive search algorithm to select the analog precoder and combiners from a predefined codebook maximizing the achievable sum-rate. Then, the selected precoder and combiners are used as output labels in the training stage of CNN-MIMO where the input-output pairs are obtained. We evaluate the performance of the proposed method through numerous and extensive simulations and show that the proposed DL framework outperforms conventional techniques. Overall, CNN-MIMO provides a robust hybrid precoding scheme in the presence of imperfections regarding the channel matrix. On top of this, the proposed approach exhibits less computation time with comparison to the optimization and codebook based approaches.Peer reviewe

    A review on Precoding Techniques For mm-Wave Massive MIMO Wireless Systems

    Get PDF
    The growing demands for high data rate wireless connectivity shed lights on the fact that appropriate spectrum regions need to be investigated so that the expected future needs will be satisfied. With this in mind, the research community has shown considerable interest in millimeter-wave (mm-wave) communication. Generally, hybrid transceivers combining the analog phase shifter and the RF chains with digital signal processing (DSP) systems are used for MIMO communication in the fifth generation (5G) wireless networks. This paper presents a survey for different precoding or beamforming techniques that have been proposed in the literature. These beamforming techniques are mainly classified based on their hardware structure into analog and digital beamforming. To reduce the hardware complexity and power consumption, the hybrid precoding techniques that combine analog and digital beamforming can be implemented for mm-wave massive MIMO wireless systems. The performance of the most common hybrid precoding algorithms has been investigated in this paper

    Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges, and Opportunities

    Full text link
    Recently there has been a flurry of research on the use of reconfigurable intelligent surfaces (RIS) in wireless networks to create smart radio environments. In a smart radio environment, surfaces are capable of manipulating the propagation of incident electromagnetic waves in a programmable manner to actively alter the channel realization, which turns the wireless channel into a controllable system block that can be optimized to improve overall system performance. In this article, we provide a tutorial overview of reconfigurable intelligent surfaces (RIS) for wireless communications. We describe the working principles of reconfigurable intelligent surfaces (RIS) and elaborate on different candidate implementations using metasurfaces and reflectarrays. We discuss the channel models suitable for both implementations and examine the feasibility of obtaining accurate channel estimates. Furthermore, we discuss the aspects that differentiate RIS optimization from precoding for traditional MIMO arrays highlighting both the arising challenges and the potential opportunities associated with this emerging technology. Finally, we present numerical results to illustrate the power of an RIS in shaping the key properties of a MIMO channel.Comment: to appear in the IEEE Transactions on Cognitive Communications and Networking (TCCN
    • …
    corecore