4,239 research outputs found

    Instance-based Deep Transfer Learning

    Full text link
    Deep transfer learning recently has acquired significant research interest. It makes use of pre-trained models that are learned from a source domain, and utilizes these models for the tasks in a target domain. Model-based deep transfer learning is probably the most frequently used method. However, very little research work has been devoted to enhancing deep transfer learning by focusing on the influence of data. In this paper, we propose an instance-based approach to improve deep transfer learning in a target domain. Specifically, we choose a pre-trained model from a source domain and apply this model to estimate the influence of training samples in a target domain. Then we optimize the training data of the target domain by removing the training samples that will lower the performance of the pre-trained model. We later either fine-tune the pre-trained model with the optimized training data in the target domain, or build a new model which is initialized partially based on the pre-trained model, and fine-tune it with the optimized training data in the target domain. Using this approach, transfer learning can help deep learning models to capture more useful features. Extensive experiments demonstrate the effectiveness of our approach on boosting the quality of deep learning models for some common computer vision tasks, such as image classification.Comment: Accepted to WACV 2019. This is a preprint versio

    Deep transfer learning for improving single-EEG arousal detection

    Full text link
    Datasets in sleep science present challenges for machine learning algorithms due to differences in recording setups across clinics. We investigate two deep transfer learning strategies for overcoming the channel mismatch problem for cases where two datasets do not contain exactly the same setup leading to degraded performance in single-EEG models. Specifically, we train a baseline model on multivariate polysomnography data and subsequently replace the first two layers to prepare the architecture for single-channel electroencephalography data. Using a fine-tuning strategy, our model yields similar performance to the baseline model (F1=0.682 and F1=0.694, respectively), and was significantly better than a comparable single-channel model. Our results are promising for researchers working with small databases who wish to use deep learning models pre-trained on larger databases.Comment: Accepted for presentation at EMBC202
    • …
    corecore