87,171 research outputs found

    Effect of neurostimulation on cognition and mood in refractory epilepsy.

    Get PDF
    Epilepsy is a common, debilitating neurological disorder characterized by recurrent seizures. Mood disorders and cognitive deficits are common comorbidities in epilepsy that, like seizures, profoundly influence quality of life and can be difficult to treat. For patients with refractory epilepsy who are not candidates for resection, neurostimulation, the electrical modulation of epileptogenic brain tissue, is an emerging treatment alternative. Several forms of neurostimulation are currently available, and therapy selection hinges on relative efficacy for seizure control and amelioration of neuropsychiatric comorbidities. Here, we review the current evidence for how invasive and noninvasive neurostimulation therapies affect mood and cognition in persons with epilepsy. Invasive therapies include vagus nerve stimulation (VNS), deep brain stimulation (DBS), and responsive neurostimulation (RNS). Noninvasive therapies include trigeminal nerve stimulation (TNS), repetitive transcranial magnetic stimulation (rTMS), and transcranial direct current stimulation (tDCS). Overall, current evidence supports stable cognition and mood with all neurostimulation therapies, although there is some evidence that cognition and mood may improve with invasive forms of neurostimulation. More research is required to optimize the effects of neurostimulation for improvements in cognition and mood

    Deep brain and cortical stimulation for epilepsy

    Get PDF
    Background : Despite optimal medical treatment, including epilepsy surgery, many epilepsy patients have uncontrolled seizures. In the last decades, interest has grown in invasive intracranial neurostimulation as a treatment for these patients. Intracranial stimulation includes both deep brain stimulation (DBS) (stimulation through depth electrodes) and cortical stimulation (subdural electrodes). Objectives : To assess the efficacy, safety and tolerability of deep brain and cortical stimulation for refractory epilepsy based on randomized controlled trials. Search methods : We searched PubMed (6 August 2013), the Cochrane Epilepsy Group Specialized Register (31 August 2013), Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2013, Issue 7 of 12) and reference lists of retrieved articles. We also contacted device manufacturers and other researchers in the field. No language restrictions were imposed. Selection criteria : Randomized controlled trials (RCTs) comparing deep brain or cortical stimulation to sham stimulation, resective surgery or further treatment with antiepileptic drugs. Data collection and analysis : Four review authors independently selected trials for inclusion. Two review authors independently extracted the relevant data and assessed trial quality and overall quality of evidence. The outcomes investigated were seizure freedom, responder rate, percentage seizure frequency reduction, adverse events, neuropsychological outcome and quality of life. If additional data were needed, the study investigators were contacted. Results were analysed and reported separately for different intracranial targets for reasons of clinical heterogeneity. Main results : Ten RCTs comparing one to three months of intracranial neurostimulation to sham stimulation were identified. One trial was on anterior thalamic DBS (n = 109; 109 treatment periods); two trials on centromedian thalamic DBS (n = 20; 40 treatment periods), but only one of the trials (n = 7; 14 treatment periods) reported sufficient information for inclusion in the quantitative meta-analysis; three trials on cerebellar stimulation (n = 22; 39 treatment periods); three trials on hippocampal DBS (n = 15; 21 treatment periods); and one trial on responsive ictal onset zone stimulation (n = 191; 191 treatment periods). Evidence of selective reporting was present in four trials and the possibility of a carryover effect complicating interpretation of the results could not be excluded in 4 cross-over trials without any washout period. Moderate-quality evidence could not demonstrate statistically or clinically significant changes in the proportion of patients who were seizure-free or experienced a 50% or greater reduction in seizure frequency (primary outcome measures) after 1 to 3 months of anterior thalamic DBS in (multi) focal epilepsy, responsive ictal onset zone stimulation in (multi) focal epilepsy patients and hippocampal DBS in (medial) temporal lobe epilepsy. However, a statistically significant reduction in seizure frequency was found for anterior thalamic DBS (-17.4% compared to sham stimulation; 95% confidence interval (CI) -32.1 to -1.0; high-quality evidence), responsive ictal onset zone stimulation (-24.9%; 95% CI -40.1 to 6.0; high-quality evidence)) and hippocampal DBS (-28.1%; 95% CI -34.1 to -22.2; moderate-quality evidence). Both anterior thalamic DBS and responsive ictal onset zone stimulation do not have a clinically meaningful impact on quality life after three months of stimulation (high-quality evidence). Electrode implantation resulted in asymptomatic intracranial haemorrhage in 3% to 4% of the patients included in the two largest trials and 5% to 13% had soft tissue infections; no patient reported permanent symptomatic sequelae. Anterior thalamic DBS was associated with fewer epilepsy-associated injuries (7.4 versus 25.5%; P = 0.01) but higher rates of self-reported depression (14.8 versus 1.8%; P = 0.02) and subjective memory impairment (13.8 versus 1.8%; P = 0.03); there were no significant differences in formal neuropsychological testing results between the groups. Responsive ictal-onset zone stimulation was well tolerated with few side effects but SUDEP rate should be closely monitored in the future (4 per 340 [= 11.8 per 1000] patient-years; literature: 2.2-10 per 1000 patient-years). The limited number of patients preclude firm statements on safety and tolerability of hippocampal DBS. With regards to centromedian thalamic DBS and cerebellar stimulation, no statistically significant effects could be demonstrated but evidence is of only low to very low quality. Authors' conclusions : Only short term RCTs on intracranial neurostimulation for epilepsy are available. Compared to sham stimulation, one to three months of anterior thalamic DBS ((multi) focal epilepsy), responsive ictal onset zone stimulation ((multi) focal epilepsy) and hippocampal DBS (temporal lobe epilepsy) moderately reduce seizure frequency in refractory epilepsy patients. Anterior thalamic DBS is associated with higher rates of self-reported depression and subjective memory impairment. SUDEP rates require careful monitoring in patients undergoing responsive ictal onset zone stimulation. There is insufficient evidence to make firm conclusive statements on the efficacy and safety of hippocampal DBS, centromedian thalamic DBS and cerebellar stimulation. There is a need for more, large and well-designed RCTs to validate and optimize the efficacy and safety of invasive intracranial neurostimulation treatments

    A CHEESY AFFAIR! - REPORT OF A CASE OF AN EPIDERMOID CYST OF PAROTID

    Get PDF
    This article is a report of a case of epidermoid cyst of the deep lobe of the left parotid, being reported and described for the benefit of the readers in view of the rarity of the condition. 

    Versatility of Bicoronal flap approach in Head and neck surgeries

    Get PDF
    Bicoronal approach popularised by Tessier is one of the versatile approaches for skulland frontal region (1-6).In this article we present our experience regarding Bicoronal flapapproach in 3 different cases. Each patient had different pathologies in frontal region forwhich the same approach had been used. We also describe in detail about the incision, itsindications and contra indications, advantages and disadvantages. Incision was made in hairbearing area. Hence post operatively, cosmetic results were appealing in all the patients 9. Itpreserves the supraorbital neurovascular bundle, so complaints related to that are avoided. Inthis article, we discuss about the individual patient, merits and demerits of this particularapproach in each patient. 

    Management of Forehead Scars

    Get PDF
    This article provides an overview of scar management within the forehead region. It addresses the unique challenges specific to the treatment of forehead wounds. A logical, stepwise approach is used. A subsite based treatment algorithm is provided along with a review of current best practices. Pertinent case examples are included for demonstration purposes
    corecore