23 research outputs found

    Deep specification mining

    Get PDF
    Singapore National Research Foundatio

    Are Formal Contracts a useful Digital Twin of Software Systems?

    Get PDF
    Digital Twins are a trend topic in the industry today to either manage runtime information or forecast properties of devices and products. The techniques for Digitial Twins are already employed in several disciplines of formal methods, in particular, formal verification, runtime verification and specification inference. In this paper, we connect the Digital Twin concept and existing research areas in the field of formal methods. We sketch how digital twins for software-centric systems can be forged from existing formal methods

    Tools and Algorithms for SoC Communication Traces

    Full text link
    In this paper, we study seven well-known trace analysis techniques both from the hardware and software domain and discuss their performance on communication-centric system-on-chip (SoC) traces. SoC traces are usually huge in size and concurrent in nature, therefore mining SoC traces poses additional challenges. We provide a hands-on discussion of the selected tools/algorithms in terms of the input, output, and analysis methods they employ. Hardware traces also varies in nature when observed in different level, this work can help developers/academicians to pick up the right techniques for their work. We take advantage of a synthetic trace generator to find the interestingness of the mined outcomes for each tool as well as we work with a realistic GEM5 set up to find the performance of these tools on more realistic SoC traces. Comprehensive analysis of the tool's performance and a benchmark trace dataset are also presented

    Mining SoC Message Flows with Attention Model

    Full text link
    High-quality system-level message flow specifications are necessary for comprehensive validation of system-on-chip (SoC) designs. However, manual development and maintenance of such specifications are daunting tasks. We propose a disruptive method that utilizes deep sequence modeling with the attention mechanism to infer accurate flow specifications from SoC communication traces. The proposed method can overcome the inherent complexity of SoC traces induced by the concurrent executions of SoC designs that existing mining tools often find extremely challenging. We conduct experiments on five highly concurrent traces and find that the proposed approach outperforms several existing state-of-the-art trace mining tools.Comment: 7 page

    Statistical log differencing

    Get PDF
    National Research Foundation (NRF) Singapor
    corecore