2,728 research outputs found

    Deep-Learning for Classification of Colorectal Polyps on Whole-Slide Images

    Full text link
    Histopathological characterization of colorectal polyps is an important principle for determining the risk of colorectal cancer and future rates of surveillance for patients. This characterization is time-intensive, requires years of specialized training, and suffers from significant inter-observer and intra-observer variability. In this work, we built an automatic image-understanding method that can accurately classify different types of colorectal polyps in whole-slide histology images to help pathologists with histopathological characterization and diagnosis of colorectal polyps. The proposed image-understanding method is based on deep-learning techniques, which rely on numerous levels of abstraction for data representation and have shown state-of-the-art results for various image analysis tasks. Our image-understanding method covers all five polyp types (hyperplastic polyp, sessile serrated polyp, traditional serrated adenoma, tubular adenoma, and tubulovillous/villous adenoma) that are included in the US multi-society task force guidelines for colorectal cancer risk assessment and surveillance, and encompasses the most common occurrences of colorectal polyps. Our evaluation on 239 independent test samples shows our proposed method can identify the types of colorectal polyps in whole-slide images with a high efficacy (accuracy: 93.0%, precision: 89.7%, recall: 88.3%, F1 score: 88.8%). The presented method in this paper can reduce the cognitive burden on pathologists and improve their accuracy and efficiency in histopathological characterization of colorectal polyps, and in subsequent risk assessment and follow-up recommendations

    Enhancing Skin Cancer Diagnosis with Deep Learning-Based Classification

    Get PDF
    The diagnosis of skin cancer has been identified as a significant medical challenge in the 21st century due to its complexity, cost, and subjective interpretation. Early diagnosis is critical, especially in fatal cases like melanoma, as it affects the likelihood of successful treatment. Therefore, there is a need for automated methods in early diagnosis, especially with a diverse range of image samples with varying diagnoses. An automated system for dermatological disease recognition through image analysis has been proposed and compared to conventional medical personnel-based detection. This project proposes an automated technique for skin cancer classification using images from the International Skin Imaging Collaboration (ISIC) dataset, incorporating deep learning (DL) techniques that have demonstrated significant advancements in artificial intelligence (AI) research. An automated system that recognizes and classifies skin cancer through deep learning techniques could prove useful in the medical field, as it can accurately detect the presence of skin cancer at an early stage. The ISIC dataset, which includes a vast collection of images of various skin conditions, provides an excellent opportunity to develop and validate deep learning algorithms for skin cancer classification. The proposed technique could have a significant impact on the medical industry by reducing the workload of medical personnel while providing accurate and timely diagnoses.

    A Review on Skin Disease Classification and Detection Using Deep Learning Techniques

    Get PDF
    Skin cancer ranks among the most dangerous cancers. Skin cancers are commonly referred to as Melanoma. Melanoma is brought on by genetic faults or mutations on the skin, which are caused by Unrepaired Deoxyribonucleic Acid (DNA) in skin cells. It is essential to detect skin cancer in its infancy phase since it is more curable in its initial phases. Skin cancer typically progresses to other regions of the body. Owing to the disease's increased frequency, high mortality rate, and prohibitively high cost of medical treatments, early diagnosis of skin cancer signs is crucial. Due to the fact that how hazardous these disorders are, scholars have developed a number of early-detection techniques for melanoma. Lesion characteristics such as symmetry, colour, size, shape, and others are often utilised to detect skin cancer and distinguish benign skin cancer from melanoma. An in-depth investigation of deep learning techniques for melanoma's early detection is provided in this study. This study discusses the traditional feature extraction-based machine learning approaches for the segmentation and classification of skin lesions. Comparison-oriented research has been conducted to demonstrate the significance of various deep learning-based segmentation and classification approaches

    Does a Previous Segmentation Improve the Automatic Detection of Basal Cell Carcinoma Using Deep Neural Networks?

    Get PDF
    This article belongs to the Special Issue "Image Processing and Analysis for Preclinical and Clinical Applications"Basal Cell Carcinoma (BCC) is the most frequent skin cancer and its increasing incidence is producing a high overload in dermatology services. In this sense, it is convenient to aid physicians in detecting it soon. Thus, in this paper, we propose a tool for the detection of BCC to provide a prioritization in the teledermatology consultation. Firstly, we analyze if a previous segmentation of the lesion improves the ulterior classification of the lesion. Secondly, we analyze three deep neural networks and ensemble architectures to distinguish between BCC and nevus, and BCC and other skin lesions. The best segmentation results are obtained with a SegNet deep neural network. A 98% accuracy for distinguishing BCC from nevus and a 95% accuracy classifying BCC vs. all lesions have been obtained. The proposed algorithm outperforms the winner of the challenge ISIC 2019 in almost all the metrics. Finally, we can conclude that when deep neural networks are used to classify, a previous segmentation of the lesion does not improve the classification results. Likewise, the ensemble of different neural network configurations improves the classification performance compared with individual neural network classifiers. Regarding the segmentation step, supervised deep learning-based methods outperform unsupervised onesMinisterio de Economía y Competitividad DPI2016-81103-RFEDER-US, Junta de Andalucía US-1381640Fondo Social Europeo Iniciativa de Empleo Juvenil EJ3-83-

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements
    corecore