2 research outputs found

    3차원 μ‚¬λžŒ μžμ„Έ 좔정을 μœ„ν•œ 3차원 볡원, μ•½μ§€λ„ν•™μŠ΅, μ§€λ„ν•™μŠ΅ 방법

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : μœ΅ν•©κ³Όν•™κΈ°μˆ λŒ€ν•™μ› μœ΅ν•©κ³Όν•™λΆ€(지λŠ₯ν˜•μœ΅ν•©μ‹œμŠ€ν…œμ „κ³΅), 2019. 2. κ³½λ…Έμ€€.Estimating human poses from images is one of the fundamental tasks in computer vision, which leads to lots of applications such as action recognition, human-computer interaction, and virtual reality. Especially, estimating 3D human poses from 2D inputs is a challenging problem since it is inherently under-constrained. In addition, obtaining 3D ground truth data for human poses is only possible under the limited and restricted environments. In this dissertation, 3D human pose estimation is studied in different aspects focusing on various types of the availability of the data. To this end, three different methods to retrieve 3D human poses from 2D observations or from RGB images---algorithms of 3D reconstruction, weakly-supervised learning, and supervised learning---are proposed. First, a non-rigid structure from motion (NRSfM) algorithm that reconstructs 3D structures of non-rigid objects such as human bodies from 2D observations is proposed. In the proposed framework which is named as Procrustean Regression, the 3D shapes are regularized based on their aligned shapes. We show that the cost function of the Procrustean Regression can be casted into an unconstrained problem or a problem with simple bound constraints, which can be efficiently solved by existing gradient descent solvers. This framework can be easily integrated with numerous existing models and assumptions, which makes it more practical for various real situations. The experimental results show that the proposed method gives competitive result to the state-of-the-art methods for orthographic projection with much less time complexity and memory requirement, and outperforms the existing methods for perspective projection. Second, a weakly-supervised learning method that is capable of learning 3D structures when only 2D ground truth data is available as a training set is presented. Extending the Procrustean Regression framework, we suggest Procrustean Regression Network, a learning method that trains neural networks to learn 3D structures using training data with 2D ground truths. This is the first attempt that directly integrates an NRSfM algorithm into neural network training. The cost function that contains a low-rank function is also firstly used as a cost function of neural networks that reconstructs 3D shapes. During the test phase, 3D structures of human bodies can be obtained via a feed-forward operation, which enables the framework to have much faster inference time compared to the 3D reconstruction algorithms. Third, a supervised learning method that infers 3D poses from 2D inputs using neural networks is suggested. The method exploits a relational unit which captures the relations between different body parts. In the method, each pair of different body parts generates relational features, and the average of the features from all the pairs are used for 3D pose estimation. We also suggest a dropout method called relational dropout, which can be used in relational modules to impose robustness to the occlusions. The experimental results validate that the performance of the proposed algorithm does not degrade much when missing points exist while maintaining state-of-the-art performance when every point is visible.RGB μ˜μƒμ—μ„œμ˜ μ‚¬λžŒ μžμ„Έ μΆ”μ • 방법은 컴퓨터 λΉ„μ „ λΆ„μ•Όμ—μ„œ μ€‘μš”ν•˜λ©° μ—¬λŸ¬ μ–΄ν”Œλ¦¬μΌ€μ΄μ…˜μ˜ 기본이 λ˜λŠ” κΈ°μˆ μ΄λ‹€. μ‚¬λžŒ μžμ„Έ 좔정은 λ™μž‘ 인식, 인간-컴퓨터 μƒν˜Έμž‘μš©, 가상 ν˜„μ‹€, 증강 ν˜„μ‹€ λ“± κ΄‘λ²”μœ„ν•œ λΆ„μ•Όμ—μ„œ 기반 기술둜 μ‚¬μš©λ  수 μžˆλ‹€. 특히, 2차원 μž…λ ₯μœΌλ‘œλΆ€ν„° 3차원 μ‚¬λžŒ μžμ„Έλ₯Ό μΆ”μ •ν•˜λŠ” λ¬Έμ œλŠ” 무수히 λ§Žμ€ ν•΄λ₯Ό κ°€μ§ˆ 수 μžˆλŠ” 문제이기 λ•Œλ¬Έμ— ν’€κΈ° μ–΄λ €μš΄ 문제둜 μ•Œλ €μ Έ μžˆλ‹€. λ˜ν•œ, 3차원 μ‹€μ œ λ°μ΄ν„°μ˜ μŠ΅λ“μ€ λͺ¨μ…˜μΊ‘처 μŠ€νŠœλ””μ˜€ λ“± μ œν•œλœ ν™˜κ²½ν•˜μ—μ„œλ§Œ κ°€λŠ₯ν•˜κΈ° λ•Œλ¬Έμ— 얻을 수 μžˆλŠ” λ°μ΄ν„°μ˜ 양이 ν•œμ •μ μ΄λ‹€. λ³Έ λ…Όλ¬Έμ—μ„œλŠ”, 얻을 수 μžˆλŠ” ν•™μŠ΅ λ°μ΄ν„°μ˜ μ’…λ₯˜μ— 따라 μ—¬λŸ¬ 방면으둜 3차원 μ‚¬λžŒ μžμ„Έλ₯Ό μΆ”μ •ν•˜λŠ” 방법을 μ—°κ΅¬ν•˜μ˜€λ‹€. ꡬ체적으둜, 2차원 κ΄€μΈ‘κ°’ λ˜λŠ” RGB μ˜μƒμ„ λ°”νƒ•μœΌλ‘œ 3차원 μ‚¬λžŒ μžμ„Έλ₯Ό μΆ”μ •, λ³΅μ›ν•˜λŠ” μ„Έ 가지 방법--3차원 볡원, μ•½μ§€λ„ν•™μŠ΅, μ§€λ„ν•™μŠ΅--을 μ œμ‹œν•˜μ˜€λ‹€. 첫 번째둜, μ‚¬λžŒμ˜ 신체와 같이 λΉ„μ •ν˜• 객체의 2차원 κ΄€μΈ‘κ°’μœΌλ‘œλΆ€ν„° 3차원 ꡬ쑰λ₯Ό λ³΅μ›ν•˜λŠ” λΉ„μ •ν˜• μ›€μ§μž„ 기반 ꡬ쑰 (Non-rigid structure from motion) μ•Œκ³ λ¦¬μ¦˜μ„ μ œμ•ˆν•˜μ˜€λ‹€. ν”„λ‘œν¬λ£¨μŠ€ν…ŒμŠ€ νšŒκ·€ (Procrustean regression)으둜 λͺ…λͺ…ν•œ μ œμ•ˆλœ ν”„λ ˆμž„μ›Œν¬μ—μ„œ, 3차원 ν˜•νƒœλ“€μ€ κ·Έλ“€μ˜ μ •λ ¬λœ ν˜•νƒœμ— λŒ€ν•œ ν•¨μˆ˜λ‘œ μ •κ·œν™”λœλ‹€. μ œμ•ˆλœ ν”„λ‘œν¬λ£¨μŠ€ν…ŒμŠ€ νšŒκ·€μ˜ λΉ„μš© ν•¨μˆ˜λŠ” 3차원 ν˜•νƒœ μ •λ ¬κ³Ό κ΄€λ ¨λœ μ œμ•½μ„ λΉ„μš© ν•¨μˆ˜μ— ν¬ν•¨μ‹œμΌœ 경사 ν•˜κ°•λ²•μ„ μ΄μš©ν•œ μ΅œμ ν™”κ°€ κ°€λŠ₯ν•˜λ‹€. μ œμ•ˆλœ 방법은 λ‹€μ–‘ν•œ λͺ¨λΈκ³Ό 가정을 ν¬ν•¨μ‹œν‚¬ 수 μžˆμ–΄ μ‹€μš©μ μ΄κ³  μœ μ—°ν•œ ν”„λ ˆμž„μ›Œν¬μ΄λ‹€. λ‹€μ–‘ν•œ μ‹€ν—˜μ„ 톡해 μ œμ•ˆλœ 방법은 세계 졜고 μˆ˜μ€€μ˜ 방법듀과 비ꡐ해 μœ μ‚¬ν•œ μ„±λŠ₯을 λ³΄μ΄λ©΄μ„œ, λ™μ‹œμ— μ‹œκ°„, 곡간 λ³΅μž‘λ„ λ©΄μ—μ„œ κΈ°μ‘΄ 방법에 λΉ„ν•΄ μš°μˆ˜ν•¨μ„ λ³΄μ˜€λ‹€. 두 번째둜 μ œμ•ˆλœ 방법은, 2차원 ν•™μŠ΅ λ°μ΄ν„°λ§Œ μ£Όμ–΄μ‘Œμ„ λ•Œ 2차원 μž…λ ₯μ—μ„œ 3차원 ꡬ쑰λ₯Ό λ³΅μ›ν•˜λŠ” μ•½μ§€λ„ν•™μŠ΅ 방법이닀. ν”„λ‘œν¬λ£¨μŠ€ν…ŒμŠ€ νšŒκ·€ 신경망 (Procrustean regression network)둜 λͺ…λͺ…ν•œ μ œμ•ˆλœ ν•™μŠ΅ 방법은 신경망 λ˜λŠ” μ»¨λ³Όλ£¨μ…˜ 신경망을 톡해 μ‚¬λžŒμ˜ 2차원 μžμ„Έλ‘œλΆ€ν„° 3차원 μžμ„Έλ₯Ό μΆ”μ •ν•˜λŠ” 방법을 ν•™μŠ΅ν•œλ‹€. ν”„λ‘œν¬λ£¨μŠ€ν…ŒμŠ€ νšŒκ·€μ— μ‚¬μš©λœ λΉ„μš© ν•¨μˆ˜λ₯Ό μˆ˜μ •ν•˜μ—¬ 신경망을 ν•™μŠ΅μ‹œν‚€λŠ” λ³Έ 방법은, λΉ„μ •ν˜• μ›€μ§μž„ 기반 ꡬ쑰에 μ‚¬μš©λœ λΉ„μš© ν•¨μˆ˜λ₯Ό 신경망 ν•™μŠ΅μ— μ μš©ν•œ 졜초의 μ‹œλ„μ΄λ‹€. λ˜ν•œ λΉ„μš©ν•¨μˆ˜μ— μ‚¬μš©λœ μ €κ³„μˆ˜ ν•¨μˆ˜ (low-rank function)λ₯Ό 신경망 ν•™μŠ΅μ— 처음으둜 μ‚¬μš©ν•˜μ˜€λ‹€. ν…ŒμŠ€νŠΈ 데이터에 λŒ€ν•΄μ„œ 3차원 μ‚¬λžŒ μžμ„ΈλŠ” μ‹ κ²½λ§μ˜ 전방전달(feed forward)연산에 μ˜ν•΄ μ–»μ–΄μ§€λ―€λ‘œ, 3차원 볡원 방법에 λΉ„ν•΄ 훨씬 λΉ λ₯Έ 3차원 μžμ„Έ 좔정이 κ°€λŠ₯ν•˜λ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ, 신경망을 μ΄μš©ν•΄ 2차원 μž…λ ₯μœΌλ‘œλΆ€ν„° 3차원 μ‚¬λžŒ μžμ„Έλ₯Ό μΆ”μ •ν•˜λŠ” μ§€λ„ν•™μŠ΅ 방법을 μ œμ‹œν•˜μ˜€λ‹€. λ³Έ 방법은 관계 신경망 λͺ¨λ“ˆ(relational modules)을 ν™œμš©ν•΄ μ‹ μ²΄μ˜ λ‹€λ₯Έ λΆ€μœ„κ°„μ˜ 관계λ₯Ό ν•™μŠ΅ν•œλ‹€. μ„œλ‘œ λ‹€λ₯Έ λΆ€μœ„μ˜ μŒλ§ˆλ‹€ 관계 νŠΉμ§•μ„ μΆ”μΆœν•΄ λͺ¨λ“  관계 νŠΉμ§•μ˜ 평균을 μ΅œμ’… 3차원 μžμ„Έ 좔정에 μ‚¬μš©ν•œλ‹€. λ˜ν•œ κ΄€κ³„ν˜• λ“œλžμ•„μ›ƒ(relational dropout)μ΄λΌλŠ” μƒˆλ‘œμš΄ ν•™μŠ΅ 방법을 μ œμ‹œν•΄ 가렀짐에 μ˜ν•΄ λ‚˜νƒ€λ‚˜μ§€ μ•Šμ€ 2차원 관츑값이 μžˆλŠ” μƒν™©μ—μ„œ, κ°•μΈν•˜κ²Œ λ™μž‘ν•  수 μžˆλŠ” 3차원 μžμ„Έ μΆ”μ • 방법을 μ œμ‹œν•˜μ˜€λ‹€. μ‹€ν—˜μ„ 톡해 ν•΄λ‹Ή 방법이 2차원 관츑값이 μΌλΆ€λ§Œ 주어진 μƒν™©μ—μ„œλ„ 큰 μ„±λŠ₯ ν•˜λ½μ΄ 없이 효과적으둜 3차원 μžμ„Έλ₯Ό 좔정함을 증λͺ…ν•˜μ˜€λ‹€.Abstract i Contents iii List of Tables vi List of Figures viii 1 Introduction 1 1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4.1 3D Reconstruction of Human Bodies . . . . . . . . . . 9 1.4.2 Weakly-Supervised Learning for 3D HPE . . . . . . . . 11 1.4.3 Supervised Learning for 3D HPE . . . . . . . . . . . . 11 1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Related Works 14 2.1 2D Human Pose Estimation . . . . . . . . . . . . . . . . . . . . 14 2.2 3D Human Pose Estimation . . . . . . . . . . . . . . . . . . . . 16 2.3 Non-rigid Structure from Motion . . . . . . . . . . . . . . . . . 18 2.4 Learning to Reconstruct 3D Structures via Neural Networks . . 23 3 3D Reconstruction of Human Bodies via Procrustean Regression 25 3.1 Formalization of NRSfM . . . . . . . . . . . . . . . . . . . . . 27 3.2 Procrustean Regression . . . . . . . . . . . . . . . . . . . . . . 28 3.2.1 The Cost Function of Procrustean Regression . . . . . . 29 3.2.2 Derivatives of the Cost Function . . . . . . . . . . . . . 32 3.2.3 Example Functions for f and g . . . . . . . . . . . . . . 38 3.2.4 Handling Missing Points . . . . . . . . . . . . . . . . . 43 3.2.5 Optimization . . . . . . . . . . . . . . . . . . . . . . . 44 3.2.6 Initialization . . . . . . . . . . . . . . . . . . . . . . . 44 3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.1 Orthographic Projection . . . . . . . . . . . . . . . . . 46 3.3.2 Perspective Projection . . . . . . . . . . . . . . . . . . 56 3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4 Weakly-Supervised Learning of 3D Human Pose via Procrustean Regression Networks 69 4.1 The Cost Function for Procrustean Regression Network . . . . . 70 4.2 Choosing f and g for Procrustean Regression Network . . . . . 74 4.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 75 4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 77 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5 Supervised Learning of 3D Human Pose via Relational Networks 86 5.1 Relational Networks . . . . . . . . . . . . . . . . . . . . . . . 88 5.2 Relational Networks for 3D HPE . . . . . . . . . . . . . . . . . 88 5.3 Extensions to Multi-Frame Inputs . . . . . . . . . . . . . . . . 91 5.4 Relational Dropout . . . . . . . . . . . . . . . . . . . . . . . . 93 5.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 94 5.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 95 5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6 Concluding Remarks 105 6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . 108 Abstract (In Korean) 128Docto
    corecore