4,007 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Displacement and the Humanities: Manifestos from the Ancient to the Present

    Get PDF
    This is the final version. Available on open access from MDPI via the DOI in this recordThis is a reprint of articles from the Special Issue published online in the open access journal Humanities (ISSN 2076-0787) (available at: https://www.mdpi.com/journal/humanities/special_issues/Manifestos Ancient Present)This volume brings together the work of practitioners, communities, artists and other researchers from multiple disciplines. Seeking to provoke a discourse around displacement within and beyond the field of Humanities, it positions historical cases and debates, some reaching into the ancient past, within diverse geo-chronological contexts and current world urgencies. In adopting an innovative dialogic structure, between practitioners on the ground - from architects and urban planners to artists - and academics working across subject areas, the volume is a proposition to: remap priorities for current research agendas; open up disciplines, critically analysing their approaches; address the socio-political responsibilities that we have as scholars and practitioners; and provide an alternative site of discourse for contemporary concerns about displacement. Ultimately, this volume aims to provoke future work and collaborations - hence, manifestos - not only in the historical and literary fields, but wider research concerned with human mobility and the challenges confronting people who are out of place of rights, protection and belonging

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Automated identification and behaviour classification for modelling social dynamics in group-housed mice

    Get PDF
    Mice are often used in biology as exploratory models of human conditions, due to their similar genetics and physiology. Unfortunately, research on behaviour has traditionally been limited to studying individuals in isolated environments and over short periods of time. This can miss critical time-effects, and, since mice are social creatures, bias results. This work addresses this gap in research by developing tools to analyse the individual behaviour of group-housed mice in the home-cage over several days and with minimal disruption. Using data provided by the Mary Lyon Centre at MRC Harwell we designed an end-to-end system that (a) tracks and identifies mice in a cage, (b) infers their behaviour, and subsequently (c) models the group dynamics as functions of individual activities. In support of the above, we also curated and made available a large dataset of mouse localisation and behaviour classifications (IMADGE), as well as two smaller annotated datasets for training/evaluating the identification (TIDe) and behaviour inference (ABODe) systems. This research constitutes the first of its kind in terms of the scale and challenges addressed. The data source (side-view single-channel video with clutter and no identification markers for mice) presents challenging conditions for analysis, but has the potential to give richer information while using industry standard housing. A Tracking and Identification module was developed to automatically detect, track and identify the (visually similar) mice in the cluttered home-cage using only single-channel IR video and coarse position from RFID readings. Existing detectors and trackers were combined with a novel Integer Linear Programming formulation to assign anonymous tracks to mouse identities. This utilised a probabilistic weight model of affinity between detections and RFID pickups. The next task necessitated the implementation of the Activity Labelling module that classifies the behaviour of each mouse, handling occlusion to avoid giving unreliable classifications when the mice cannot be observed. Two key aspects of this were (a) careful feature-selection, and (b) judicious balancing of the errors of the system in line with the repercussions for our setup. Given these sequences of individual behaviours, we analysed the interaction dynamics between mice in the same cage by collapsing the group behaviour into a sequence of interpretable latent regimes using both static and temporal (Markov) models. Using a permutation matrix, we were able to automatically assign mice to roles in the HMM, fit a global model to a group of cages and analyse abnormalities in data from a different demographic

    2023-2024 Catalog

    Get PDF
    The 2023-2024 Governors State University Undergraduate and Graduate Catalog is a comprehensive listing of current information regarding:Degree RequirementsCourse OfferingsUndergraduate and Graduate Rules and Regulation

    Introduction to Psychology

    Get PDF
    Introduction to Psychology is a modified version of Psychology 2e - OpenStax

    Video Summarization Using Unsupervised Deep Learning

    Get PDF
    In this thesis, we address the task of video summarization using unsupervised deep-learning architectures. Video summarization aims to generate a short summary by selecting the most informative and important frames (key-frames) or fragments (key-fragments) of the full-length video, and presenting them in temporally-ordered fashion. Our objective is to overcome observed weaknesses of existing video summarization approaches that utilize RNNs for modeling the temporal dependence of frames, related to: i) the small influence of the estimated frame-level importance scores in the created video summary, ii) the insufficiency of RNNs to model long-range frames' dependence, and iii) the small amount of parallelizable operations during the training of RNNs. To address the first weakness, we propose a new unsupervised network architecture, called AC-SUM-GAN, which formulates the selection of important video fragments as a sequence generation task and learns this task by embedding an Actor-Critic model in a Generative Adversarial Network. The feedback of a trainable Discriminator is used as a reward by the Actor-Critic model in order to explore a space of actions and learn a value function (Critic) and a policy (Actor) for video fragment selection. To tackle the remaining weaknesses, we investigate the use of attention mechanisms for video summarization and propose a new supervised network architecture, called PGL-SUM, that combines global and local multi-head attention mechanisms which take into account the temporal position of the video frames, in order to discover different modelings of the frames' dependencies at different levels of granularity. Based on the acquired experience, we then propose a new unsupervised network architecture, called CA-SUM, which estimates the frames' importance using a novel concentrated attention mechanism that focuses on non-overlapping blocks in the main diagonal of the attention matrix and takes into account the attentive uniqueness and diversity of the associated frames of the video. All the proposed architectures have been extensively evaluated on the most commonly-used benchmark datasets, demonstrating their competitiveness against other approaches and documenting the contribution of our proposals on advancing the current state-of-the-art on video summarization. Finally, we make a first attempt on producing explanations for the video summarization results. Inspired by relevant works in the Natural Language Processing domain, we propose an attention-based method for explainable video summarization and we evaluate the performance of various explanation signals using our CA-SUM architecture and two benchmark datasets for video summarization. The experimental results indicate the advanced performance of explanation signals formed using the inherent attention weights, and demonstrate the ability of the proposed method to explain the video summarization results using clues about the focus of the attention mechanism

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF
    corecore