1,400 research outputs found

    Nonlinear dimensionality reduction then and now: AIMs for dissipative PDEs in the ML era

    Full text link
    This study presents a collection of purely data-driven workflows for constructing reduced-order models (ROMs) for distributed dynamical systems. The ROMs we focus on, are data-assisted models inspired by, and templated upon, the theory of Approximate Inertial Manifolds (AIMs); the particular motivation is the so-called post-processing Galerkin method of Garcia-Archilla, Novo and Titi. Its applicability can be extended: the need for accurate truncated Galerkin projections and for deriving closed-formed corrections can be circumvented using machine learning tools. When the right latent variables are not a priori known, we illustrate how autoencoders as well as Diffusion Maps (a manifold learning scheme) can be used to discover good sets of latent variables and test their explainability. The proposed methodology can express the ROMs in terms of (a) theoretical (Fourier coefficients), (b) linear data-driven (POD modes) and/or (c) nonlinear data-driven (Diffusion Maps) coordinates. Both Black-Box and (theoretically-informed and data-corrected) Gray-Box models are described; the necessity for the latter arises when truncated Galerkin projections are so inaccurate as to not be amenable to post-processing. We use the Chafee-Infante reaction-diffusion and the Kuramoto-Sivashinsky dissipative partial differential equations to illustrate and successfully test the overall framework.Comment: 27 pages, 22 figure

    Data-Driven Modeling and Forecasting of Chaotic Dynamics on Inertial Manifolds Constructed as Spectral Submanifolds

    Full text link
    We present a data-driven and interpretable approach for reducing the dimensionality of chaotic systems using spectral submanifolds (SSMs). Emanating from fixed points or periodic orbits, these SSMs are low-dimensional inertial manifolds containing the chaotic attractor of the underlying high-dimensional system. The reduced dynamics on the SSMs turn out to predict chaotic dynamics accurately over a few Lyapunov times and also reproduce long-term statistical features, such as the largest Lyapunov exponents and probability distributions, of the chaotic attractor. We illustrate this methodology on numerical data sets including a delay-embedded Lorenz attractor, a nine-dimensional Lorenz model, and a Duffing oscillator chain. We also demonstrate the predictive power of our approach by constructing an SSM-reduced model from unforced trajectories of a buckling beam, and then predicting its periodically forced chaotic response without using data from the forced beam.Comment: Submitted to Chao

    Capturing the Edge of Chaos as a Spectral Submanifold in Pipe Flows

    Full text link
    An extended turbulent state can coexist with the stable laminar state in pipe flows. We focus here on short pipes with additional discrete symmetries imposed. In this case, the boundary between the coexisting basins of attraction, often called the edge of chaos, is the stable manifold of an edge state, which is a lower-branch traveling wave solution. We show that a low-dimensional submanifold of the edge of chaos can be constructed from velocity data using the recently developed theory of spectral submanifolds (SSMs). These manifolds are the unique smoothest nonlinear continuations of nonresonant spectral subspaces of the linearized system at stationary states. Using very low dimensional SSM-based reduced-order models, we predict transitions to turbulence or laminarization for velocity fields near the edge of chaos.Comment: Accepted for publication in the Journal of Fluid Mechanic

    Autoencoders for discovering manifold dimension and coordinates in data from complex dynamical systems

    Full text link
    While many phenomena in physics and engineering are formally high-dimensional, their long-time dynamics often live on a lower-dimensional manifold. The present work introduces an autoencoder framework that combines implicit regularization with internal linear layers and L2L_2 regularization (weight decay) to automatically estimate the underlying dimensionality of a data set, produce an orthogonal manifold coordinate system, and provide the mapping functions between the ambient space and manifold space, allowing for out-of-sample projections. We validate our framework's ability to estimate the manifold dimension for a series of datasets from dynamical systems of varying complexities and compare to other state-of-the-art estimators. We analyze the training dynamics of the network to glean insight into the mechanism of low-rank learning and find that collectively each of the implicit regularizing layers compound the low-rank representation and even self-correct during training. Analysis of gradient descent dynamics for this architecture in the linear case reveals the role of the internal linear layers in leading to faster decay of a "collective weight variable" incorporating all layers, and the role of weight decay in breaking degeneracies and thus driving convergence along directions in which no decay would occur in its absence. We show that this framework can be naturally extended for applications of state-space modeling and forecasting by generating a data-driven dynamic model of a spatiotemporally chaotic partial differential equation using only the manifold coordinates. Finally, we demonstrate that our framework is robust to hyperparameter choices

    Nonlinear proper orthogonal decomposition for convection-dominated flows

    Get PDF
    Autoencoder techniques find increasingly common use in reduced order modeling as a means to create a latent space. This reduced order representation offers a modular data-driven modeling approach for nonlinear dynamical systems when integrated with a time series predictive model. In this Letter, we put forth a nonlinear proper orthogonal decomposition (POD) framework, which is an end-to-end Galerkin-free model combining autoencoders with long short-term memory networks for dynamics. By eliminating the projection error due to the truncation of Galerkin models, a key enabler of the proposed nonintrusive approach is the kinematic construction of a nonlinear mapping between the full-rank expansion of the POD coefficients and the latent space where the dynamics evolve. We test our framework for model reduction of a convection-dominated system, which is generally challenging for reduced order models. Our approach not only improves the accuracy, but also significantly reduces the computational cost of training and testing. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research under Award Number DE-SC0019290. O.S. gratefully acknowledges the Early Career Research Program (ECRP) support of the U.S. Department of Energy. O.S. also gratefully acknowledges the financial support of the National Science Foundation under Award No. DMS-2012255. T.I. acknowledges support through National Science Foundation Grant No. DMS-2012253.acceptedVersio
    • …
    corecore