74 research outputs found

    Deep Remix: Remixing Musical Mixtures Using a Convolutional Deep Neural Network

    Full text link
    Audio source separation is a difficult machine learning problem and performance is measured by comparing extracted signals with the component source signals. However, if separation is motivated by the ultimate goal of re-mixing then complete separation is not necessary and hence separation difficulty and separation quality are dependent on the nature of the re-mix. Here, we use a convolutional deep neural network (DNN), trained to estimate 'ideal' binary masks for separating voice from music, to perform re-mixing of the vocal balance by operating directly on the individual magnitude components of the musical mixture spectrogram. Our results demonstrate that small changes in vocal gain may be applied with very little distortion to the ultimate re-mix. Our method may be useful for re-mixing existing mixes

    Seeing Through Noise: Visually Driven Speaker Separation and Enhancement

    Full text link
    Isolating the voice of a specific person while filtering out other voices or background noises is challenging when video is shot in noisy environments. We propose audio-visual methods to isolate the voice of a single speaker and eliminate unrelated sounds. First, face motions captured in the video are used to estimate the speaker's voice, by passing the silent video frames through a video-to-speech neural network-based model. Then the speech predictions are applied as a filter on the noisy input audio. This approach avoids using mixtures of sounds in the learning process, as the number of such possible mixtures is huge, and would inevitably bias the trained model. We evaluate our method on two audio-visual datasets, GRID and TCD-TIMIT, and show that our method attains significant SDR and PESQ improvements over the raw video-to-speech predictions, and a well-known audio-only method.Comment: Supplementary video: https://www.youtube.com/watch?v=qmsyj7vAzo

    Improving Source Separation via Multi-Speaker Representations

    Get PDF
    Lately there have been novel developments in deep learning towards solving the cocktail party problem. Initial results are very promising and allow for more research in the domain. One technique that has not yet been explored in the neural network approach to this task is speaker adaptation. Intuitively, information on the speakers that we are trying to separate seems fundamentally important for the speaker separation task. However, retrieving this speaker information is challenging since the speaker identities are not known a priori and multiple speakers are simultaneously active. There is thus some sort of chicken and egg problem. To tackle this, source signals and i-vectors are estimated alternately. We show that blind multi-speaker adaptation improves the results of the network and that (in our case) the network is not capable of adequately retrieving this useful speaker information itself
    • …
    corecore