4 research outputs found

    Tree Trunk Detection of Eastern Red Cedar in Rangeland Environment with Deep Learning Technique

    Get PDF
    Uncontrolled spread of eastern red cedar invades the United States Great Plains prairie ecosystems and lowers biodiversity across native grasslands. The eastern red cedar (ERC) infestations cause significant challenges for ranchers and landowners, including the high costs of removing mature red cedars, reduced livestock forage feed, and reduced revenue from hunting leases. Therefore, a fleet of autonomous ground vehicles (AGV) is proposed to address the ERC infestation. However, detecting the target tree or trunk in a rangeland environment is critical in automating an ERC cutting operation. A tree trunk detection method was developed in this study for ERC trees trained in natural rangeland environments using a deep learning-based YOLOv5 model. An action camera acquired RGB images in a natural rangeland environment. A transfer learning method was adopted, and the YOLOv5 was trained to detect the varying size of the ERC tree trunk. A trained model precision, recall, and average precision were 87.8%, 84.3%, and 88.9%. The model accurately predicted the varying tree trunk sizes and differentiated between trunk and branches. This study demonstrated the potential for using pretrained deep learning models for tree trunk detection with RGB images. The developed machine vision system could be effectively integrated with a fleet of AGVs for ERC cutting. The proposed ERC tree trunk detection models would serve as a fundamental element for the AGV fleet, which would assist in effective rangeland management to maintain the ecological balance of grassland systems

    Potato powdery scab segmentation using improved GrabCut algorithm

    Get PDF
    Potato powdery scab is a serious disease that affects potato yield and has widespread global impacts. Due to its concealed symptoms, it is difficult to detect and control the disease once lesions appear. This paper aims to overcome the drawbacks of interactive algorithms and proposes an optimized approach using object detection for the GrabCut algorithm. We design a YOLOv7-guided non-interactive GrabCut algorithm and combine it with image denoising techniques, considering the characteristics of potato powdery scab lesions. We successfully achieve effective segmentation of potato powdery scab lesions. Through experiments, the improved segmentation algorithm has an average accuracy of 88.05%, and the highest accuracy can reach 91.07%. This is an increase of 46.28% and 32.69% respectively compared to the relatively accurate K-means algorithm. Moreover, compared to the original algorithm which could not segment the lesions independently, the improvement is more significant. The experimental results indicate that the algorithm has a high segmentation accuracy, which provides strong support for further disease analysis and control

    Line-based deep learning method for tree branch detection from digital images

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.jag.2022.102759. © 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensePreventive maintenance of power lines, including cutting and pruning of tree branches, is essential to avoid interruptions in the energy supply. Automatic methods can support this risky task and also reduce time consuming. Here, we propose a method in which the orientation and the grasping positions of tree branches are estimated. The proposed method firstly predicts the straight line (representing the tree branch extension) based on a convolutional neural network (CNN). Secondly, a Hough transform is applied to estimate the direction and position of the line. Finally, we estimate the grip point as the pixel point with the highest probability of belonging to the line. We generated a dataset based on internet searches and annotated 1868 images considering challenging scenarios with different tree branch shapes, capture devices, and environmental conditions. Ten-fold cross-validation was adopted, considering 90% for training and 10% for testing. We also assessed the method under corruptions (gaussian and shot) with different severity levels. The experimental analysis showed the effectiveness of the proposed method reporting F1-score of 96.78%. Our method outperformed state-of-the-art Deep Hough Transform (DHT) and Fully Convolutional Line Parsing (F-Clip).This research was funded by CNPq (p: 433783/2018–4, 310517/2020–6, 314902/2018–0, 304052/2019–1 and 303559/2019–5), FUNDECT (p: 59/300. 066/2015, 071/2015) and CAPES PrInt (p: 88881.311850/2018–01). The authors acknowledge the support of the UFMS (Federal University of Mato Grosso do Sul) and CAPES (Finance Code 001). This research was also partially supported by the Emerging Interdisciplinary Project of Central University of Finance and Economics
    corecore