366,634 research outputs found

    LW-ISP: A Lightweight Model with ISP and Deep Learning

    Full text link
    The deep learning (DL)-based methods of low-level tasks have many advantages over the traditional camera in terms of hardware prospects, error accumulation and imaging effects. Recently, the application of deep learning to replace the image signal processing (ISP) pipeline has appeared one after another; however, there is still a long way to go towards real landing. In this paper, we show the possibility of learning-based method to achieve real-time high-performance processing in the ISP pipeline. We propose LW-ISP, a novel architecture designed to implicitly learn the image mapping from RAW data to RGB image. Based on U-Net architecture, we propose the fine-grained attention module and a plug-and-play upsampling block suitable for low-level tasks. In particular, we design a heterogeneous distillation algorithm to distill the implicit features and reconstruction information of the clean image, so as to guide the learning of the student model. Our experiments demonstrate that LW-ISP has achieved a 0.38 dB improvement in PSNR compared to the previous best method, while the model parameters and calculation have been reduced by 23 times and 81 times. The inference efficiency has been accelerated by at least 15 times. Without bells and whistles, LW-ISP has achieved quite competitive results in ISP subtasks including image denoising and enhancement.Comment: 16 PAGES, ACCEPTED AS A CONFERENCE PAPER AT: BMVC 202

    Asymmetric Actor Critic for Image-Based Robot Learning

    Full text link
    Deep reinforcement learning (RL) has proven a powerful technique in many sequential decision making domains. However, Robotics poses many challenges for RL, most notably training on a physical system can be expensive and dangerous, which has sparked significant interest in learning control policies using a physics simulator. While several recent works have shown promising results in transferring policies trained in simulation to the real world, they often do not fully utilize the advantage of working with a simulator. In this work, we exploit the full state observability in the simulator to train better policies which take as input only partial observations (RGBD images). We do this by employing an actor-critic training algorithm in which the critic is trained on full states while the actor (or policy) gets rendered images as input. We show experimentally on a range of simulated tasks that using these asymmetric inputs significantly improves performance. Finally, we combine this method with domain randomization and show real robot experiments for several tasks like picking, pushing, and moving a block. We achieve this simulation to real world transfer without training on any real world data.Comment: Videos of experiments can be found at http://www.goo.gl/b57WT

    Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning

    Full text link
    Reinforcement learning (RL) algorithms for real-world robotic applications need a data-efficient learning process and the ability to handle complex, unknown dynamical systems. These requirements are handled well by model-based and model-free RL approaches, respectively. In this work, we aim to combine the advantages of these two types of methods in a principled manner. By focusing on time-varying linear-Gaussian policies, we enable a model-based algorithm based on the linear quadratic regulator (LQR) that can be integrated into the model-free framework of path integral policy improvement (PI2). We can further combine our method with guided policy search (GPS) to train arbitrary parameterized policies such as deep neural networks. Our simulation and real-world experiments demonstrate that this method can solve challenging manipulation tasks with comparable or better performance than model-free methods while maintaining the sample efficiency of model-based methods. A video presenting our results is available at https://sites.google.com/site/icml17pilqrComment: Paper accepted to the International Conference on Machine Learning (ICML) 201
    • …
    corecore