249 research outputs found

    DivGraphPointer: A Graph Pointer Network for Extracting Diverse Keyphrases

    Full text link
    Keyphrase extraction from documents is useful to a variety of applications such as information retrieval and document summarization. This paper presents an end-to-end method called DivGraphPointer for extracting a set of diversified keyphrases from a document. DivGraphPointer combines the advantages of traditional graph-based ranking methods and recent neural network-based approaches. Specifically, given a document, a word graph is constructed from the document based on word proximity and is encoded with graph convolutional networks, which effectively capture document-level word salience by modeling long-range dependency between words in the document and aggregating multiple appearances of identical words into one node. Furthermore, we propose a diversified point network to generate a set of diverse keyphrases out of the word graph in the decoding process. Experimental results on five benchmark data sets show that our proposed method significantly outperforms the existing state-of-the-art approaches.Comment: Accepted to SIGIR 201

    Persian Keyphrase Generation Using Sequence-to-Sequence Models

    Full text link
    Keyphrases are a very short summary of an input text and provide the main subjects discussed in the text. Keyphrase extraction is a useful upstream task and can be used in various natural language processing problems, for example, text summarization and information retrieval, to name a few. However, not all the keyphrases are explicitly mentioned in the body of the text. In real-world examples there are always some topics that are discussed implicitly. Extracting such keyphrases requires a generative approach, which is adopted here. In this paper, we try to tackle the problem of keyphrase generation and extraction from news articles using deep sequence-to-sequence models. These models significantly outperform the conventional methods such as Topic Rank, KPMiner, and KEA in the task of keyphrase extraction

    Keyphrase Generation: A Multi-Aspect Survey

    Full text link
    Extractive keyphrase generation research has been around since the nineties, but the more advanced abstractive approach based on the encoder-decoder framework and sequence-to-sequence learning has been explored only recently. In fact, more than a dozen of abstractive methods have been proposed in the last three years, producing meaningful keyphrases and achieving state-of-the-art scores. In this survey, we examine various aspects of the extractive keyphrase generation methods and focus mostly on the more recent abstractive methods that are based on neural networks. We pay particular attention to the mechanisms that have driven the perfection of the later. A huge collection of scientific article metadata and the corresponding keyphrases is created and released for the research community. We also present various keyphrase generation and text summarization research patterns and trends of the last two decades.Comment: 10 pages, 5 tables. Published in proceedings of FRUCT 2019, the 25th Conference of the Open Innovations Association FRUCT, Helsinki, Finlan

    Advances in Automatic Keyphrase Extraction

    Get PDF
    The main purpose of this thesis is to analyze and propose new improvements in the field of Automatic Keyphrase Extraction, i.e., the field of automatically detecting the key concepts in a document. We will discuss, in particular, supervised machine learning algorithms for keyphrase extraction, by first identifying their shortcomings and then proposing new techniques which exploit contextual information to overcome them. Keyphrase extraction requires that the key concepts, or \emph{keyphrases}, appear verbatim in the body of the document. We will identify the fact that current algorithms do not use contextual information when detecting keyphrases as one of the main shortcomings of supervised keyphrase extraction. Instead, statistical and positional cues, like the frequency of the candidate keyphrase or its first appearance in the document, are mainly used to determine if a phrase appearing in a document is a keyphrase or not. For this reason, we will prove that a supervised keyphrase extraction algorithm, by using only statistical and positional features, is actually able to extract good keyphrases from documents written in languages that it has never seen. The algorithm will be trained over a common dataset for the English language, a purpose-collected dataset for the Arabic language, and evaluated on the Italian, Romanian and Portuguese languages as well. This result is then used as a starting point to develop new algorithms that use contextual information to increase the performance in automatic keyphrase extraction. The first algorithm that we present uses new linguistics features based on anaphora resolution, which is a field of natural language processing that exploits the relations between elements of the discourse as, e.g., pronouns. We evaluate several supervised AKE pipelines based on these features on the well-known SEMEVAL 2010 dataset, and we show that the performance increases when we add such features to a model that employs statistical and positional knowledge only. Finally, we investigate the possibilities offered by the field of Deep Learning, by proposing six different deep neural networks that perform automatic keyphrase extraction. Such networks are based on bidirectional long-short term memory networks, or on convolutional neural networks, or on a combination of both of them, and on a neural language model which creates a vector representation of each word of the document. These networks are able to learn new features using the the whole document when extracting keyphrases, and they have the advantage of not needing a corpus after being trained to extract keyphrases from new documents. We show that with deep learning based architectures we are able to outperform several other keyphrase extraction algorithms, both supervised and not supervised, used in literature and that the best performances are obtained when we build an additional neural representation of the input document and we append it to the neural language model. Both the anaphora-based and the deep-learning based approaches show that using contextual information, the performance in supervised algorithms for automatic keyphrase extraction improves. In fact, in the methods presented in this thesis, the algorithms which obtained the best performance are the ones receiving more contextual information, both about the relations of the potential keyphrase with other parts of the document, as in the anaphora based approach, and in the shape of a neural representation of the input document, as in the deep learning approach. In contrast, the approach of using statistical and positional knowledge only allows the building of language agnostic keyphrase extraction algorithms, at the cost of decreased precision and recall
    corecore