11 research outputs found

    VoxCeleb2: Deep Speaker Recognition

    Full text link
    The objective of this paper is speaker recognition under noisy and unconstrained conditions. We make two key contributions. First, we introduce a very large-scale audio-visual speaker recognition dataset collected from open-source media. Using a fully automated pipeline, we curate VoxCeleb2 which contains over a million utterances from over 6,000 speakers. This is several times larger than any publicly available speaker recognition dataset. Second, we develop and compare Convolutional Neural Network (CNN) models and training strategies that can effectively recognise identities from voice under various conditions. The models trained on the VoxCeleb2 dataset surpass the performance of previous works on a benchmark dataset by a significant margin.Comment: To appear in Interspeech 2018. The audio-visual dataset can be downloaded from http://www.robots.ox.ac.uk/~vgg/data/voxceleb2 . 1806.05622v2: minor fixes; 5 page

    Additive Margin SincNet for Speaker Recognition

    Full text link
    Speaker Recognition is a challenging task with essential applications such as authentication, automation, and security. The SincNet is a new deep learning based model which has produced promising results to tackle the mentioned task. To train deep learning systems, the loss function is essential to the network performance. The Softmax loss function is a widely used function in deep learning methods, but it is not the best choice for all kind of problems. For distance-based problems, one new Softmax based loss function called Additive Margin Softmax (AM-Softmax) is proving to be a better choice than the traditional Softmax. The AM-Softmax introduces a margin of separation between the classes that forces the samples from the same class to be closer to each other and also maximizes the distance between classes. In this paper, we propose a new approach for speaker recognition systems called AM-SincNet, which is based on the SincNet but uses an improved AM-Softmax layer. The proposed method is evaluated in the TIMIT dataset and obtained an improvement of approximately 40% in the Frame Error Rate compared to SincNet

    Time-Contrastive Learning Based Deep Bottleneck Features for Text-Dependent Speaker Verification

    Get PDF
    There are a number of studies about extraction of bottleneck (BN) features from deep neural networks (DNNs)trained to discriminate speakers, pass-phrases and triphone states for improving the performance of text-dependent speaker verification (TD-SV). However, a moderate success has been achieved. A recent study [1] presented a time contrastive learning (TCL) concept to explore the non-stationarity of brain signals for classification of brain states. Speech signals have similar non-stationarity property, and TCL further has the advantage of having no need for labeled data. We therefore present a TCL based BN feature extraction method. The method uniformly partitions each speech utterance in a training dataset into a predefined number of multi-frame segments. Each segment in an utterance corresponds to one class, and class labels are shared across utterances. DNNs are then trained to discriminate all speech frames among the classes to exploit the temporal structure of speech. In addition, we propose a segment-based unsupervised clustering algorithm to re-assign class labels to the segments. TD-SV experiments were conducted on the RedDots challenge database. The TCL-DNNs were trained using speech data of fixed pass-phrases that were excluded from the TD-SV evaluation set, so the learned features can be considered phrase-independent. We compare the performance of the proposed TCL bottleneck (BN) feature with those of short-time cepstral features and BN features extracted from DNNs discriminating speakers, pass-phrases, speaker+pass-phrase, as well as monophones whose labels and boundaries are generated by three different automatic speech recognition (ASR) systems. Experimental results show that the proposed TCL-BN outperforms cepstral features and speaker+pass-phrase discriminant BN features, and its performance is on par with those of ASR derived BN features. Moreover,....Comment: Copyright (c) 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    X-VECTORS: ROBUST NEURAL EMBEDDINGS FOR SPEAKER RECOGNITION

    Get PDF
    Speaker recognition is the task of identifying speakers based on their speech signal. Typically, this involves comparing speech from a known speaker, with recordings from unknown speakers, and making same-or-different speaker decisions. If the lexical contents of the recordings are fixed to some phrase, the task is considered text-dependent, otherwise it is text-independent. This dissertation is primarily concerned with this second, less constrained problem. Since speech data lives in a complex, high-dimensional space, it is difficult to directly compare speakers. Comparisons are facilitated by embeddings: mappings from complex input patterns to low-dimensional Euclidean spaces where notions of distance or similarity are defined in natural ways. For almost ten years, systems based on i-vectors--a type of embedding extracted from a traditional generative model--have been the dominant paradigm in this field. However, in other areas of applied machine learning, such as text or vision, embeddings extracted from discriminatively trained neural networks are the state-of-the-art. Recently, this line of research has become very active in speaker recognition as well. Neural networks are a natural choice for this purpose, as they are capable of learning extremely complex mappings, and when training data resources are abundant, tend to outperform traditional methods. In this dissertation, we develop a next-generation neural embedding--denoted by x-vector--for speaker recognition. These neural embeddings are demonstrated to substantially improve upon the state-of-the-art on a number of benchmark datasets
    corecore