7,307 research outputs found

    Sensor Technologies to Manage the Physiological Traits of Chronic Pain: A Review

    Get PDF
    Non-oncologic chronic pain is a common high-morbidity impairment worldwide and acknowledged as a condition with significant incidence on quality of life. Pain intensity is largely perceived as a subjective experience, what makes challenging its objective measurement. However, the physiological traces of pain make possible its correlation with vital signs, such as heart rate variability, skin conductance, electromyogram, etc., or health performance metrics derived from daily activity monitoring or facial expressions, which can be acquired with diverse sensor technologies and multisensory approaches. As the assessment and management of pain are essential issues for a wide range of clinical disorders and treatments, this paper reviews different sensor-based approaches applied to the objective evaluation of non-oncological chronic pain. The space of available technologies and resources aimed at pain assessment represent a diversified set of alternatives that can be exploited to address the multidimensional nature of pain.Ministerio de Economía y Competitividad (Instituto de Salud Carlos III) PI15/00306Junta de Andalucía PIN-0394-2017Unión Europea "FRAIL

    Information technologies for pain management

    Get PDF
    Millions of people around the world suffer from pain, acute or chronic and this raises the importance of its screening, assessment and treatment. The importance of pain is attested by the fact that it is considered the fifth vital sign for indicating basic bodily functions, health and quality of life, together with the four other vital signs: blood pressure, body temperature, pulse rate and respiratory rate. However, while these four signals represent an objective physical parameter, the occurrence of pain expresses an emotional status that happens inside the mind of each individual and therefore, is highly subjective that makes difficult its management and evaluation. For this reason, the self-report of pain is considered the most accurate pain assessment method wherein patients should be asked to periodically rate their pain severity and related symptoms. Thus, in the last years computerised systems based on mobile and web technologies are becoming increasingly used to enable patients to report their pain which lead to the development of electronic pain diaries (ED). This approach may provide to health care professionals (HCP) and patients the ability to interact with the system anywhere and at anytime thoroughly changes the coordinates of time and place and offers invaluable opportunities to the healthcare delivery. However, most of these systems were designed to interact directly to patients without presence of a healthcare professional or without evidence of reliability and accuracy. In fact, the observation of the existing systems revealed lack of integration with mobile devices, limited use of web-based interfaces and reduced interaction with patients in terms of obtaining and viewing information. In addition, the reliability and accuracy of computerised systems for pain management are rarely proved or their effects on HCP and patients outcomes remain understudied. This thesis is focused on technology for pain management and aims to propose a monitoring system which includes ubiquitous interfaces specifically oriented to either patients or HCP using mobile devices and Internet so as to allow decisions based on the knowledge obtained from the analysis of the collected data. With the interoperability and cloud computing technologies in mind this system uses web services (WS) to manage data which are stored in a Personal Health Record (PHR). A Randomised Controlled Trial (RCT) was implemented so as to determine the effectiveness of the proposed computerised monitoring system. The six weeks RCT evidenced the advantages provided by the ubiquitous access to HCP and patients so as to they were able to interact with the system anywhere and at anytime using WS to send and receive data. In addition, the collected data were stored in a PHR which offers integrity and security as well as permanent on line accessibility to both patients and HCP. The study evidenced not only that the majority of participants recommend the system, but also that they recognize it suitability for pain management without the requirement of advanced skills or experienced users. Furthermore, the system enabled the definition and management of patient-oriented treatments with reduced therapist time. The study also revealed that the guidance of HCP at the beginning of the monitoring is crucial to patients' satisfaction and experience stemming from the usage of the system as evidenced by the high correlation between the recommendation of the application, and it suitability to improve pain management and to provide medical information. There were no significant differences regarding to improvements in the quality of pain treatment between intervention group and control group. Based on the data collected during the RCT a clinical decision support system (CDSS) was developed so as to offer capabilities of tailored alarms, reports, and clinical guidance. This CDSS, called Patient Oriented Method of Pain Evaluation System (POMPES), is based on the combination of several statistical models (one-way ANOVA, Kruskal-Wallis and Tukey-Kramer) with an imputation model based on linear regression. This system resulted in fully accuracy related to decisions suggested by the system compared with the medical diagnosis, and therefore, revealed it suitability to manage the pain. At last, based on the aerospace systems capability to deal with different complex data sources with varied complexities and accuracies, an innovative model was proposed. This model is characterized by a qualitative analysis stemming from the data fusion method combined with a quantitative model based on the comparison of the standard deviation together with the values of mathematical expectations. This model aimed to compare the effects of technological and pen-and-paper systems when applied to different dimension of pain, such as: pain intensity, anxiety, catastrophizing, depression, disability and interference. It was observed that pen-and-paper and technology produced equivalent effects in anxiety, depression, interference and pain intensity. On the contrary, technology evidenced favourable effects in terms of catastrophizing and disability. The proposed method revealed to be suitable, intelligible, easy to implement and low time and resources consuming. Further work is needed to evaluate the proposed system to follow up participants for longer periods of time which includes a complementary RCT encompassing patients with chronic pain symptoms. Finally, additional studies should be addressed to determine the economic effects not only to patients but also to the healthcare system

    Contributions from computational intelligence to healthcare data processing

    Get PDF
    80 p.The increasing ability to gather, store and process health care information, through the electronic health records and improved communication methods opens the door for new applications intended to improve health care in many different ways. Crucial to this evolution is the development of new computational intelligence tools, related to machine learning and statistics. In this thesis we have dealt with two case studies involving health data. The first is the monitoring of children with respiratory diseases in the pediatric intensive care unit of a hospital. The alarm detection is stated as a classification problem predicting the triage selected by the nurse or medical doctor. The second is the prediction of readmissions leading to hospitalization in an emergency department of a hospital. Both problems have great impact in economic and personal well being. We have tackled them with a rigorous methodological approach, obtaining results that may lead to a real life implementation. We have taken special care in the treatment of the data imbalance. Finally we make propositions to bring these techniques to the clinical environment
    • …
    corecore