35 research outputs found

    Audio Input Generates Continuous Frames to Synthesize Facial Video Using Generative Adiversarial Networks

    Full text link
    This paper presents a simple method for speech videos generation based on audio: given a piece of audio, we can generate a video of the target face speaking this audio. We propose Generative Adversarial Networks (GAN) with cut speech audio input as condition and use Convolutional Gate Recurrent Unit (GRU) in generator and discriminator. Our model is trained by exploiting the short audio and the frames in this duration. For training, we cut the audio and extract the face in the corresponding frames. We designed a simple encoder and compare the generated frames using GAN with and without GRU. We use GRU for temporally coherent frames and the results show that short audio can produce relatively realistic output results.Comment: 5 pages, 5 figure

    Dance In the Wild: Monocular Human Animation with Neural Dynamic Appearance Synthesis

    Get PDF
    Synthesizing dynamic appearances of humans in motion plays a central role in applications such as ARWR and video editing. While many recent methods have been proposed to tackle this problem,handling loose garments with complex textures and high dynamic motion still remains challenging. In this paper,we propose a video based appearance synthesis method that tackles such challenges and demonstrates high quality results for in-the-wild videos that have not been shown before. Specifically,we adopt a StyleGAN based architecture to the task of person specific video based motion retargeting. We introduce a novel motion signature that is used to modulate the generator weights to capture dynamic appearance changes as well as regularizing the single frame based pose estimates to improve temporal coherency. We evaluate our method on a set of challenging videos and show that our approach achieves state-of-the-art performance both qualitatively and quantitatively

    C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer

    Full text link
    Human video motion transfer (HVMT) aims to synthesize videos that one person imitates other persons' actions. Although existing GAN-based HVMT methods have achieved great success, they either fail to preserve appearance details due to the loss of spatial consistency between synthesized and exemplary images, or generate incoherent video results due to the lack of temporal consistency among video frames. In this paper, we propose Coarse-to-Fine Flow Warping Network (C2F-FWN) for spatial-temporal consistent HVMT. Particularly, C2F-FWN utilizes coarse-to-fine flow warping and Layout-Constrained Deformable Convolution (LC-DConv) to improve spatial consistency, and employs Flow Temporal Consistency (FTC) Loss to enhance temporal consistency. In addition, provided with multi-source appearance inputs, C2F-FWN can support appearance attribute editing with great flexibility and efficiency. Besides public datasets, we also collected a large-scale HVMT dataset named SoloDance for evaluation. Extensive experiments conducted on our SoloDance dataset and the iPER dataset show that our approach outperforms state-of-art HVMT methods in terms of both spatial and temporal consistency. Source code and the SoloDance dataset are available at https://github.com/wswdx/C2F-FWN.Comment: This work is accepted by AAAI202

    Single-Image 3D Human Digitization with Shape-Guided Diffusion

    Full text link
    We present an approach to generate a 360-degree view of a person with a consistent, high-resolution appearance from a single input image. NeRF and its variants typically require videos or images from different viewpoints. Most existing approaches taking monocular input either rely on ground-truth 3D scans for supervision or lack 3D consistency. While recent 3D generative models show promise of 3D consistent human digitization, these approaches do not generalize well to diverse clothing appearances, and the results lack photorealism. Unlike existing work, we utilize high-capacity 2D diffusion models pretrained for general image synthesis tasks as an appearance prior of clothed humans. To achieve better 3D consistency while retaining the input identity, we progressively synthesize multiple views of the human in the input image by inpainting missing regions with shape-guided diffusion conditioned on silhouette and surface normal. We then fuse these synthesized multi-view images via inverse rendering to obtain a fully textured high-resolution 3D mesh of the given person. Experiments show that our approach outperforms prior methods and achieves photorealistic 360-degree synthesis of a wide range of clothed humans with complex textures from a single image.Comment: SIGGRAPH Asia 2023. Project website: https://human-sgd.github.io
    corecore