2,401 research outputs found

    Deep Meta Q-Learning based Multi-Task Offloading in Edge-Cloud Systems

    Get PDF
    Resource-Constrained Edge Devices Can Not Efficiently Handle the Explosive Growth of Mobile Data and the Increasing Computational Demand of Modern-Day User Applications. Task Offloading Allows the Migration of Complex Tasks from User Devices to the Remote Edge-Cloud Servers Thereby Reducing their Computational Burden and Energy Consumption While Also Improving the Efficiency of Task Processing. However, Obtaining the Optimal Offloading Strategy in a Multi-Task Offloading Decision-Making Process is an NP-Hard Problem. Existing Deep Learning Techniques with Slow Learning Rates and Weak Adaptability Are Not Suitable for Dynamic Multi-User Scenarios. in This Article, We Propose a Novel Deep Meta-Reinforcement Learning-Based Approach to the Multi-Task Offloading Problem using a Combination of First-Order Meta-Learning and Deep Q-Learning Methods. We Establish the Meta-Generalization Bounds for the Proposed Algorithm and Demonstrate that It Can Reduce the Time and Energy Consumption of IoT Applications by Up to 15%. through Rigorous Simulations, We Show that Our Method Achieves Near-Optimal Offloading Solutions While Also Being Able to Adapt to Dynamic Edge-Cloud Environments

    Stacked Auto Encoder Based Deep Reinforcement Learning for Online Resource Scheduling in Large-Scale MEC Networks

    Get PDF
    An online resource scheduling framework is proposed for minimizing the sum of weighted task latency for all the Internet-of-Things (IoT) users, by optimizing offloading decision, transmission power, and resource allocation in the large-scale mobile-edge computing (MEC) system. Toward this end, a deep reinforcement learning (DRL)-based solution is proposed, which includes the following components. First, a related and regularized stacked autoencoder (2r-SAE) with unsupervised learning is applied to perform data compression and representation for high-dimensional channel quality information (CQI) data, which can reduce the state space for DRL. Second, we present an adaptive simulated annealing approach (ASA) as the action search method of DRL, in which an adaptive h -mutation is used to guide the search direction and an adaptive iteration is proposed to enhance the search efficiency during the DRL process. Third, a preserved and prioritized experience replay (2p-ER) is introduced to assist the DRL to train the policy network and find the optimal offloading policy. The numerical results are provided to demonstrate that the proposed algorithm can achieve near-optimal performance while significantly decreasing the computational time compared with existing benchmarks
    • …
    corecore