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Abstract—Resource-constrained edge devices can not efficiently
handle the explosive growth of mobile data and the increasing
computational demand of modern-day user applications. Task
offloading allows the migration of complex tasks from user
devices to the remote edge-cloud servers thereby reducing their
computational burden and energy consumption while also im-
proving the efficiency of task processing. However, obtaining the
optimal offloading strategy in a multi-task offloading decision-
making process is an NP-hard problem. Existing Deep learning
techniques with slow learning rates and weak adaptability are
not suitable for dynamic multi-user scenarios. In this article,
we propose a novel deep meta-reinforcement learning-based
approach to the multi-task offloading problem using a combina-
tion of first-order meta-learning and deep Q-learning methods.
We establish the meta-generalization bounds for the proposed
algorithm and demonstrate that it can reduce the time and
energy consumption of IoT applications by up to 15%. Through
rigorous simulations, we show that our method achieves near-
optimal offloading solutions while also being able to adapt to
dynamic edge-cloud environments.

Index Terms—Internet of Things, Edge-Cloud Computing, Multi-
Task Offloading, Deep Q-learning, Directed Acyclic Graph, Meta-
Learning.

I. INTRODUCTION

With the advent of Internet of Things (IoT) and rapid ad-
vancements in communication technologies, there has been
an unprecedented growth in the volume of data generated by
IoT and end-user devices. AI-enabled Intelligent IoT devices
have increased demand for computational resources while
also trying to operate under stringent latency and capacity
constraints which cannot be adequately addressed by a con-
ventional centralized cloud computing architecture [1]. Edge
computing emerges as an extension of cloud computing which
shifts the function of cloud services to the proximity of
end users. Edge caching, edge training, edge inference, and
edge offloading are four fundamental components of edge
intelligence [2]. Edge offloading helps to migrate complex and
computation-intensive tasks to nearby cloudlets by utilizing
powerful decision-making capabilities [3] of edge intelligence.

Making optimal offloading decisions in multi access edge com-
puting (MEC) is generally affected by the quality of network
connection, wireless communication channels, preferences of
application users, mobility of IoT devices, and availability
of cloud servers. A downside of edge offloading is that it

increases the amount of data communication between the IoT
and edge devices which may cause network congestion and
affects the latency of user devices. In addition, adjusting the
offloading decisions in rapidly changing MEC environments is
usually a difficult task because it requires recomputing optimal
offloading solutions every time the environment changes. It
creates huge service delays [4] and increases resource con-
sumption of edge devices.

By extending the offloading process to cloud servers, users can
essentially overcome any resource limitations imposed by their
devices while also consuming less overall energy. In [35] Qu et
al. considered offloading decisions for a series of dependent
tasks considering the delay and energy consumption of the
concerned devices. It is assumed that the application sub-
tasks are atomic i.e., a task can be either performed locally
or completely offloaded to a remote location. Being able to
execute multiple sub-tasks in parallel can reduce the overall
execution time of user applications, which is highly desirable
for every user application today. Multi-threaded processing
models [47]–[49] and directed acyclic graphs (DAG) [31]–[34]
are some of the known techniques for modeling applications
in a task offloading scenario.

Deep Reinforcement Learning (DRL) is a promising way to
address task offloading issues but the main disadvantage of
DRL is slower learning speed and weak inductive bias, making
it generally less efficient [6]. Recent applications of DRL
to various MEC task offloading problems are discussed in
[2], [24], [25], [27], where the models learn the offloading
policy by interacting with the MEC environment but strictly
consider the MEC host, wireless channel and user equipment
to be stationary. All these methods have the shortcoming of
weak adaptability in dynamic environments as they require
full retraining in new environments, making it a very time-
consuming process.

Researchers have introduced meta-reinforcement learning [26]
to address the adaptability issue by leveraging knowledge
learned from a range of training tasks to perform significantly
better on new or unseen tasks. Meta reinforcement learning
(MRL) tries to learn a meta-policy which, when trained,
can learn a new or unseen task, using a small number of
interactions with the environment. MRL algorithms usually
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have two learning procedures, the inner loop and the outer
loop. The inner loop learns a new task, while the outer loop
uses its experiences over different task contexts in random
environments to gradually adjust the parameters of meta-policy
such that new tasks can be learned in a fewer number of
learning steps [27]. It should be noted that the term task used
in the context of meta-learning represents a meta-task and is
different from that used in the context of task offloading.

In this research, we introduce a novel meta-learning method
that accounts for multi-task dependency and quick adaptability
while optimizing offloading decisions, ensuring that total ex-
ecution time and energy consumption are kept to a minimum
in a dynamic edge-cloud environment. The major contribution
of this work can be summarized as follows:

• We propose a framework for multi-task offloading where
we use directed acyclic graphs (DAGs) for modeling
applications and consider that the offloading decisions
are to be made for multiple dependent tasks across
multiple remote edge or cloud servers.

• Taking into account the dynamic nature of edge-cloud
environments, we formulate the task offloading problem
as a few-shot meta-learning [50] problem.

• We propose a meta-learning algorithm, called the Deep
Meta Q-learning based task-offloading (DMQTO) which
uses first-order meta-learning and deep Q-learning to
address the multi-task offloading problem.

• We evaluate the performance of the proposed algorithm
through rigorous testing under a variety of dynamic
edge-cloud environments. We observe that the proposed
method can achieve up to 15% improvements in time and
energy consumption of applications over four baseline
methods.

The rest of the paper is organized as follows. We have
reviewed the related work in Section II. The system model
and problem formulation are presented in Section III. In
Section IV, we have presented the proposed Deep Meta Q-
learning based offloading framework and algorithm. Section
V contains experimental results and performance evaluation.
Finally, Section VI concludes the paper.

II. RELATED WORK

In the existing literature, we have noted that the task-offloading
methods used in MECs or similar environments can be broadly
classified into two categories -Traditional and Deep Learning
methods.

Traditional methods mainly used heuristics and meta-heuristic
based solution and numerical optimization based methods. Xu
Chen et al. in [7] have modeled the computation offloading
decision problem as a multi-user computation offloading game
for mobile-edge cloud computing in a multi-channel wireless

context and proposed a distributed computation offloading
algorithm that can successfully achieve the game’s Nash
equilibrium. In [8], Sardellitti et al. have formulated the
computation offloading problem in a multi-cell mobile edge-
computing scenario. Here, in the single-user case, authors
have computed the global optimal solution of the resulting
non-convex optimization problem in closed form. In the more
general multi-cell multi-user scenario, authors have developed
centralized and distributed Successive Convex Approximation
based algorithm with provable convergence to local optimal
solutions. A lyapunov optimization method has been proposed
in [9] so that long-term problems can be optimized on a slot-
by-slot basis and authors have utilized an open Jackson queu-
ing network to optimize caching, jointly with task offloading.
Based on lyapunov optimization Shu et al. [10] have presented
a novel eTime strategy for energy-efficient data transmission
between cloud and mobile devices. eTime aggressively and
adaptively seizes the timing of good connectivity to pre-fetch
frequently used data while deferring delay-tolerant data in
bad connectivity. In [11] Mao et al. have proposed the low
complexity lyapunov optimization-based dynamic computation
offloading algorithm for green MEC systems with energy
harvesting (EH) devices which jointly decides the offloading
decision, the CPU-cycle frequencies for mobile execution,
and the transmit power for computation offloading. In [12],
Zhang et al. have investigated the trade-off between energy
consumption and execution delay for dynamic offloading tasks
in a MEC system with EH capabilities and proposed an online
dynamic lyapunov optimization-based offloading algorithm.

In [13], Wu et al. addressed key challenges of task offloading
in blockchain-enabled heterogeneous IoT-edge-cloud comput-
ing architecture and proposed an energy-efficient dynamic task
offloading algorithm which can dynamically offload tasks by
choosing the optimal computing location in an online way.
In [14], Wu et al. have investigated two types of delayed
offloading policies - the partial offloading model and the full
offloading model. In both models, the authors have minimized
the energy-response time-weighted product metric. Authors
have shown that for delay-sensitive applications, the partial
offloading model is mostly preferred and if applications are
delay-tolerant, the full offloading model outperforms the other
offloading models when using long deadlines.

Li et al. in [15] have proposed a computing offloading game
for mobile devices and edge-cloud servers and showed the ex-
istence of Stackelberg equilibrium in that game. In [54], Wang
et al. have proposed distributed task offloading algorithm by
formulating the offloading problem as a multi-user potential
game. In [16], Goudarzi et al. proposed a novel memetic
algorithm based application placement technique to solve task
offloading problems in computing environments with multiple
IoT devices, multiple fog/edge servers, and cloud servers. In
[43], Ning et al. have modeled the multi-user computation
offloading problem as a mixed-integer linear programming
problem and proposed an iterative heuristic algorithm to make
offloading decisions dynamically. In [33], Han et al. proposed
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a heuristic algorithm for the dependency-aware task offloading
problem but did not consider parallelism among the sub-tasks.
The traditional approaches cannot handle large and complex
decision-making processes and require a huge amount of
computation time, making them impractical under many real-
world scenarios.

In the last few years, artificial intelligence (AI) and deep
learning (DL) have gained a significant amount of popularity
among researchers. Although reinforcement learning (RL)
shows promising results, it usually suffers from slow learning
and weak adaptability in unseen environments. In such cases,
conventional RL algorithms perform poorly since the learned
parameters cannot make accurate decisions in changing
environments and require retraining from scratch, making
the learning process very slow. Repetitive training consumes
large amount of computation resources and increases the
overall time consumption of the offloading algorithm.

In [5], Huang et al. have proposed deep reinforcement
learning-based online offloading algorithm, to maximize the
weighted sum computation rate in wireless-powered MEC
networks with binary computation offloading. In [45], Yu et
al. have applied deep-imitation-learning based algorithms for
fine-grained computation offloading for a single mobile device
within MEC networks. In [46], distributed deep learning-
based offloading algorithm has been proposed for MEC net-
works to minimize the overall system utility including both the
total energy consumption and the delay in finishing the task. In
[18], Wu et al. have proposed distributed deep learning-driven
task offloading algorithm where multiple parallel deep neural
networks (DNNs) are adopted to effectively and efficiently
generate offloading decisions over the mobile device (MDs),
edge-cloud server, and central cloud server. To obtain the op-
timal offloading policy in a dynamic blockchain network with
MEC for multiple users, Zhang et al. in [20], have proposed
reinforcement learning-based task offloading algorithms but
did not consider dynamic environment changes in MEC.

In [35], Qu et al. have proposed a meta reinforcement learning-
based task offloading framework for edge-cloud computing
but have considered a single task at a time for offloading
decision-making. Since their method considers a single task,
it is not suitable for dependent multi-task application models
where the offloading decisions for multiple tasks would be
taken at a time. In [36], Chen et al. developed a DRL-based
methodology for the MEC system’s DAG-based multi-task
computation offloading strategy, but this approach has very
limited adaptability in MEC environments that change often.

IoT applications are usually composed of multiple tasks that
depend on each other. Therefore, while making offloading
decisions, it is important to take task dependencies into
account. In [44], Wang et al. have formulated multi-user partial
computation offloading in the MEC system to minimize the
weighted sum of energy consumption of smart mobile devices
(SMDs). In [21], Wang et al. have developed a successful

offloading strategy to achieve the lowest possible total latency
and used meta-reinforcement learning for fast adaptability. The
authors use directed acyclic graphs (DAGs) to model mobile
applications and use policy optimization to train a sequence-
to-sequence (seq2seq) neural network. In [51], Wang et al.
approached the dependent task offloading using both deep Q-
learning and proximal policy optimization techniques. In [53],
Zhang et al. have used first-order meta-RL methods to obtain
fine-tuned policies in heterogeneous edge/cloud computing
environments with multiple mobile terminal users, varying
data volumes, and varying task workloads. However, they
do not consider inter-task dependency. In [52], Huang et al.
have suggested meta-learning for computation offloading in
dynamic MEC, however, they have not taken task dependency
into account.

The deep learning methods discussed so far can easily
outperform the traditional methods in complex decision-
making scenarios. However, ensuring adaptability and
minimizing total execution time as well as energy consumption
in dynamic environments for highly complex, multi-task
systems is very challenging. Traditional optimization
algorithms require iteratively adjusting the offloading
decisions towards the optimum which is often infeasible
for real-time system optimization under a fast-changing
environment. Therefore, improved intelligent meta-learning
algorithms are well suited to address the aforementioned
objective.

III. SYSTEM MODEL

As shown in Figure 1, the edge-cloud network model consists
of multiple cloud and edge servers interconnected via a
network with the IoT devices directly connecting to nearby
high-bandwidth edge servers. For the remainder of this paper,
we shall refer to all end-user devices as IoT devices while the
edge and cloud servers shall be referred to as remote servers.

Figure 1: Edge-Cloud Network with multiple IoT devices

A. Environment Model

The environment is designed to model multi-user edge-cloud
scenarios like MECs. It is based on an underlying edge-cloud
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network topology where each server or device is referred to
as a location (l). An offloading process that optimizes the
offloading decision based on parameters like task execution
time and energy consumption, requires access to underlying
environment parameters such as available bandwidth, trans-
mission delays in the network, computation power of cloud
servers and energy requirement of the user and edge servers
to compute offloading costs. It is assumed that this information
is available through appropriate monitoring tools deployed in
the environment. We characterize such an environment model
using the following parameters:

• DR(li, lj) represents the Data Time Consumption i.e.,
the time taken to move a unit of data between locations
li and lj over the network.

• DE(li) represents the Data Energy Consumption i.e.,
the energy consumed for processing a unit of data at
the location li, which includes energy consumption
for transmitting and receiving data through appropriate
networking hardware.

• VR(li) represents the Task Time Consumption i.e., the
time taken to execute a unit task at the location li.

• VE(li) represents the Task Energy Consumption i.e., the
energy consumed for executing a unit task at the location
li.

B. Application Model

Figure 2: Example of DAGs for some computer vision appli-
cations.

As described in [21], [35], [36], [51], [56], [57], IoT devices
can have applications composed of multiple tasks with inner
dependencies among them. We refer to such a set of dependent
tasks as an application workflow. A workflow can be inter-
preted as one large set of programs or tasks to be executed in
a certain order as defined by the data dependencies between
them [35], [56]. An application may generate a variety of
workflows that are essentially task graphs modeled using
directed acyclic graphs (DAGs). Some examples of computer
vision application DAGs [57] are shown in Figure 2. In
such a workflow DAG, the nodes represent the tasks in a

workflow while the edges represent the data dependencies
i.e., communication required between tasks. It is assumed that
each task requires some input data and produces certain output
data for the next task. After the execution of a certain task
in the workflow, the output data produced, has to be moved
over the network to the location where the next task is to
be executed. Also, the initial data required for the first set of
tasks is assumed to be located on the IoT device. At the end
of completing all tasks, the final output data must be sent back
to the IoT device which generated the workflow. Formally, a
workflow containing N tasks is represented by a DAG (w),
defined as:

w = {V,D}

where, V represents the vertex set and D represents the edge
set, defined as:

V = {(vi) : 0 ≤ i ≤ (N + 1)}

D = {(di,j) : 0 ≤ i, j ≤ (N + 1)}

Accordingly, for the ith task, vi represents the task size (in
CPU cycles) and di,j represents the size of data dependency
(in bytes) to the jth task. Note that the entry task (v0) and the
exit task (vN+1) are added to the workflow-DAG as a proxy
for IoT input and output respectively. Both the entry and the
exit task have unit task size which represents some initial and
final processing delay at the IoT devices. These tasks cannot be
offloaded and their sizes will not affect the offloading decision.
Also, the set Ji represents the set of all parent tasks of the
ith task, and the set Ki represents the set of all tasks that
are dependent on the ith task. Figure 3 shows a few DAG
topologies used to represent an application workflow.

Figure 3: IoT application workflows modeled as directed
acyclic graphs (DAGs)

In order to leverage the computation resource of the edge
servers, the application would require to offload its workflow
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consisting of multiple dependent tasks, across the available
remote locations using an appropriate offloading scheme. Such
a scheme should be able to produce offloading solutions of the
form p, represented by a sequence of N offloading locations
as:

p = {l1, l2, l3, ..., lN}

where li represents the offloading location for the ith task
of the workflow. It should be noted that the IoT devices are
referenced by a special location number l = 0. Hence, li = 0
represents no offloading i.e., the task is not to be offloaded to a
remote location but executed locally on the IoT device. Since
only IoT devices can generate workflows, it is assumed that
l0 = lN+1 = 0. For example, Figure 4 depicts the placement
solution p = {1, 4, 2, 5} for the given workflow containing
four tasks. In the solution vector p, the locations 1 and 2 refer
to edge servers whereas the locations 4 and 5 refer to cloud
servers.

Figure 4: Task placement across the edge-cloud network using
offloading solution p = {1, 4, 2, 5} for a 3-level DAG

C. Cost Model

The offloading cost (U) captures the total weighted cost of
offloading a workflow (w) which includes task execution time,
delay in moving data within the network, and the energy
consumed in processing tasks and data by remote servers
and IoT devices. Specifically, the offloading cost for a given
workflow is the sum of the costs of the total energy consumed
and the total delay incurred in executing the workflow i.e.,
from the time of the request, till the final output data is
received back at the requesting IoT device.

To capture the proper trade-off between execution time and
energy consumption, one should agree on an appropriate
cost per unit of both time and energy. Hence a trade-off is
decided where we assume equivalence between some amount
of time and energy. The trade-off is implementation specific
and should be decided based on the energy consumption
and execution time of hardware components used by the

participating IoT devices and remote servers. We assume that
Tt units of time (milliseconds) are equivalent to Te units of
energy (millijoules) and both the terms have unit cost. Hence,
the cost per unit of execution time (CT ) and the cost per unit
of energy consumption (CE) can be defined as:

CT =
1

Tt
(1)

CE =
1

Te
(2)

The offloading cost depends on the parameters that define
the underlying edge-cloud network model which may vary
in the number of edge servers (E) and the number of cloud
servers (C) that are available. To model the environment, we
assume a set of four parameters {DR, DE , VR, VE} as defined
in Section III.A. The offloading cost for a workflow consists
of two components namely, energy consumption cost (E) and
time consumption cost (T ). These components are defined as
follows:

• Energy Consumption Cost (E), is the combined energy
cost incurred in completing all the tasks in a workflow
at their respective offloading location in the edge-cloud
network, defined as:

E = CE · (ED + EV ) (3)

where, ED represents the total energy consumed for
data communication at the respective locations of task
execution, defined as:

ED =

N∑
i=1

[DE(li)× (
∑
j∈Ji

dj,i +
∑
k∈Ki

di,k)] (4)

and EV represents the total energy consumed in executing
all the tasks at their respective offloading locations,
defined as:

EV =

N∑
i=1

vi × VE(li) (5)

• Time Consumption Cost (T ), is the cost equivalent of
the total time required to complete the execution of a
workflow including task execution time and data com-
munication delay. The total execution time of all the
tasks in a workflow-DAG is given by the cost of the
critical path i.e., the path of maximum delay through
the corresponding delay-DAG. To obtain a delay-DAG
(w∆ = {V∆, D∆}), we first define a DAG which is
isomorphic to the workflow-DAG (w = {V,D}) and then
set its weights as:

D∆(i, j) = di,j ×DR(li, lj) + vi × VR(li) (6)

The delay-DAG combines the time consumption for task
execution and data transfer. As opposed to workflow-
DAG, the delay-DAG has no weights assigned to its
nodes. The edge weights in the delay-DAG represent the
time delay between dependent tasks i.e., the sum of task
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execution time and the data transfer time to the next
dependent task. The total time consumption cost can then
be obtained using:

T = CT ·∆max(w∆) (7)

where ∆max is a function that computes the total delay
of the critical path (longest path) in a given delay-DAG
(w∆). Finding the longest path is an NP-hard problem
for an arbitrary graph. However, for directed acyclic
graphs, finding the longest path is the same as finding
the shortest path on an equivalent graph with negative
weights. Hence, the critical path problem for the delay-
DAG can be solved in linear time O(E + V ) using a
topological sorting-based algorithm [55].

Finally, the total offloading cost (U) for a workflow (w) using
an offloading solution (p) can be expressed as:

U(w, p) = δtT + δeE (8)

where δt and δe are the weights assigned to the time con-
sumption cost and the energy consumption cost respectively.
These weights take binary values (δt, δe ∈ {0, 1}) based on
the application’s mode of operation. The applications may run
under three major modes of operation as follows:

• Low Latency Mode: applications running on low latency
mode prefer to improve performance. In this mode,
no weight is assigned to the energy consumption cost.
Hence, δe = 0 and δt = 1.

• Low Power Mode : applications running on low power
mode prefer to reduce the energy consumption of
devices. In this mode, no weight is assigned to the time
consumption cost. Hence, δe = 1 and δt = 0.

• Balanced Mode: applications running on balanced
mode prefer to minimize both energy consumption
and execution time. In this mode, equal weights are
assigned to both the energy consumption cost and the
time consumption cost. Hence, δe = δt = 1.

Using an application-specific offloading approach requires
each application instance to have its own offloading policy
that is fine-tuned to the application-specific workflows. When
an application instance is initialized on an IoT device, it
communicates with a central offloading manager to obtain
a refined policy based on the current application profile,
user preferences, and device parameters such as transmission
rate and energy consumption. The central offloading manager
maintains a collection of meta-policies and provides fine-tuned
policies to each application instance as and when required.

As shown in Figure 5, our approach shifts the computation
required for training environment-specific policies from IoT

Figure 5: Steps in application-specific task-offloading

devices to edge servers which further reduces the computa-
tional burden at the end devices. Another advantage of such
an application-specific approach is that it allows the grouping
of offloading policies according to the set of applications they
apply to. Instead of maintaining a single policy for all types
of applications, we can now group the policies according to
the similarity in their workflow profiles and the specific IoT
devices that they can support. Through our experiments, it is
observed that a clever grouping of applications can greatly
improve adaptability and allows the use of heterogeneous
policies. It should be noted that the terms offloading scheme
and offloading policy can be used interchangeably. A summary
of the notation used in this paper is presented in Table I.

Table I: Summary of Notation

Parameter Description
li Offloading location for ith task.
vi Task size for ith task.
di,j Data dependency size between ith and jth task.

VE(li) Task energy consumption at location li
DE(li) Data energy consumption at location li
VR(li) Task time consumption at location li

DR(li, lj) Data time consumption between location li and lj
CE Cost per unit of energy consumption
CT Cost per unit of time consumption
ED Total data energy consumption for workflow
EV Total task energy consumption for workflow
E Total energy consumption for workflow
T Total time consumption for workflow
δt Weight assigned to task time consumption
δe Weight assigned to task energy consumption
U Total offloading cost
E Number of edge offloading locations
C Number of cloud offloading locations
Gn Node-density for workflow DAG
Gh Maximum height of workflow DAG
Gb Maximum branch-factor for workflow DAG

D. Problem Formulation

Given an edge-cloud network represented using parameters
{DR, DE , VR, VE} containing E number of edge servers
and C number of cloud servers with the IoT applications
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generating workflows according to their respective profiles
and mode of operation, our objective is to find an optimal
offloading scheme that can generate minimum cost offloading
solution for any given workflow. Formally, the problem can
be expressed as:

min
p
{U(w, p)} ∀w ∈W (9)

where W represents the set of all possible workflows that can
be generated by an application running on an IoT device under
different profiles or modes of operation. The workflows, rep-
resented by DAGs, can vary according to the IoT application
and user preferences. We consider a variety of workflow DAGs
characterized by the following attributes:

• Node-density - the number of nodes in the DAG that
represent the total number of tasks in the workflow.

• Height - the maximum path length starting from the
entry task and ending at the exit task.

• Maximum branch-factor - represents the maximum num-
ber of dependent tasks that any given task can have.

We consider a variety of applications with randomly generated
workflow DAGs having the node density, height, and maxi-
mum branch factor limited to a maximum of 20. These pa-
rameters are described in detail in Section V. The applications
are allowed to run in three modes of operation i.e., low latency,
low power, and balanced mode. In the following section, we
formalize the offloading cost optimization problem using the
reinforcement learning framework.

E. Reinforcement Learning

In a reinforcement learning setup, we consider agents that
are able to take a sequence of actions in an environment
by following a policy. The environment state dynamics are
described by a Markov Decision Process (MDP) which can
be either stochastic or fully deterministic. The agents build up
their experience by taking actions and obtaining a single scalar
reward per action. In an episodic setting with fixed horizon
(H), we consider the MDP to have a finite and constant
number of state transitions (steps) for each episode i.e., agents
can reach a final state from any given initial state, by taking a
fixed and constant number of actions. The task of an agent is
to learn a policy that maximizes the cumulative reward over
every possible episode. Formally, consider an agent operating
over an episode of T time-steps where at time-step t the agent
encounters state st and chooses an action at according to its
policy (π) and receives a numerical reward rt. Throughout the
paper, it is assumed that the actions are discrete and finite as
well.

Q-learning [42] is a well-established technique that uses an
action-value function, also called the Q-function: Q(st, at), to
estimate the expected future reward for taking an action at in
a state st. At its core, Q-learning uses the Bellman Optimality

equation to characterize the optimal expected future reward
function via a state-action value function as:

Q∗(st, a) = E[rt + γ ·max
á

(st+1, á)] (10)

where, the expectation is taken w.r.t the distribution of state
st+1 and reward rt obtained by taking action a, and γ
represents the discount factor. Unlike classical approaches that
use a linear or tabular representation of the Q-function, modern
approaches employ the use of non-linear deep neural net-
works for automatic feature extraction and the parameterized
representation of the Q-function. However, it requires large
quantities of data and computation resources for the neural
network algorithms to learn appropriate feature representation.
Even though data collection is quite straightforward, it is
crucial for the algorithm to operate on uncorrelated samples
of data for stability. To mitigate this problem, the technique
of experience replay [22] has proven to be highly successful.
The agent uses a replay buffer to store its experience as a
data set of transitions of the form {st, at, rt, st+1}. During
the learning process, the agent uses mini-batches of experience
(B) drawn randomly from the replay buffer to calculate the
Q-value updates and uses stochastic gradient-based methods
to optimize the parameterized Q-function as:

min
θ

∑
i∈B

[Qθ(si, ai)− (ri + γ ·max
a

QT
θ (si, a)) ]

2 (11)

where QT
θ represents a target Q-network [40] which is often

combined with a deep Q-learning algorithm to avoid any
rapid changes to the target values as the parameters of the
base Q-network change during learning.

We formalize our problem in terms of a fully deterministic
markov decision process (MDP) which is described by the
tuple (H,S,A, TS , R) defined as follows:

• Horizon (H): the number of time steps to reach a final
state from any given initial state. In this formulation, we
assume the horizon to be the same as the number of tasks
in the workflow. The agent makes an offloading decision
for one task of the workflow at each time step. Hence,

H = {1, 2, ..., N} (12)

• State Space (S): the state vectors carry information about
the time-step, the workflow and the partial offloading
solution. Assuming that the set W represents all possible
workflows and the set P represents the set of all possible
placement solutions, we define the state space as

S = H ×W × P (13)

Hence, a state is defined by the tuple, s = (h,w, p).
The initial state is chosen uniformly from the set of all
possible initial states defined as (S0)

S0 = {1} ×W × {p0} (14)
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where p0 is the zero vector in the space of all possible
offloading solutions (P ). It refers to a solution where
none of the tasks are offloaded and are instead executed
locally on the IoT device. Hence,

p0 = {0, 0, ..., 0} (15)

• Action Space (A): the action space is a discrete space
containing (1+E+C) actions with each action referring to
an offloading location available on the underlying edge-
cloud network. The zero location is representative of no
offloading. We define action space as

A = {0, 1, ..., E , E + 1, ..., E + C} (16)

• State-Transition function (TS): since we assume a fully
deterministic MDP, the transition functions directly map
the current state to the next state instead of defining a
transition probability. Hence, TS : S ×A→ S

TS((h,w, p), a) = (h+ 1, w,M(h, p, a)) (17)

where, M(h, p, a) represents an action transformation
function,

M : H × P ×A→ P (18)

The action transformation function describes how the
partial offloading solution (p) changes by applying
action a at time-step h.

• Reward function (R): for the deterministic MDP, the
reward function defines a real-valued reward for each
state-action pair. Hence R : S ×A→ R

R((h,w, p), a) = U(w, p)− U(w,M(h, p, a)) (19)

For any given workflow (w), an action (a) at a time-step (h),
defines a transformation on the solution p(h−1) → p(h). The
reward function captures the amount of improvement made to
the solution. Since the MDP always starts in the initial state
s0 = (1, w, p0), the summation of reward over N time steps
by following a policy π can be calculated as:

RN (π) =
∑N

i=1 R((i, w, pi−1), π(i, w, pi−1))

=
∑N

i=1[U(w, pi−1)− U(w,M(i, pi−1, π(i, w, pi−1)))]

Assuming ai = π(i, w, pi−1), and pi = M(i, pi−1, ai)
It follows that,

RN (π) =

N∑
i=1

[U(w, pi−1)− U(w, pi)] (20)

Finally,
RN (π) = U(w, p0)− U(w, pN ) (21)

Hence,

max
π

[RT (π)] ≡ max
π

[U(w, p0)− U(w, pN )] (22)

Since U(w, p0) is a known constant for a given workflow,
maximizing the total reward RN is the same as minimizing
the offloading cost U(w, pN ). It follows,

max
π

[RT (π)] ≡ min
π

[U(w, pN )] (23)

Therefore, the offloading cost (U) can be minimized by
solving the MDP formulated above as long as the set of action
transformations guarantees that the minimum cost solution
is reachable from initial state (1, w, p0) in at most N time-
steps. The optimal policy (π∗) defines a set of N actions that
transform the initial solution (p0) to the optimal solution (pN )
after N time-steps.

The action transformation function (M) decides how the
current solution changes by applying an action on the current
state of the MDP. A variety of transformation functions can be
used that allow the solution to reach its minimum in at least
N time steps. We define transformation function (M) as:

M(h, p, a) = ṕ (24)

where, ṕ represents a new solution in which all the tasks fol-
lowing the hth task are offloaded to the location corresponding
to the action a, while locations of the tasks prior to the hth

task remain unchanged.

Figure 6: Transformation of the offloading solution vector p ∈
P , over a single episode of N = 4 time-steps.

As shown in Figure 6, the MDP always starts from a fixed
initial solution (p0), and M is applied at each time step with
some chosen value of action (a). It can be seen that the
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choice of action transformation function allows the solution
vector to be modified in every dimension so that all possible
solutions are reachable by at least one unique sequence of
N actions. It should be noted that the tasks are offloaded
only after the final solution has been produced by the trained
agent i.e., after all time steps have been completed. None of
the tasks are offloaded on any intermediate time step.

IV. META-LEARNING BASED ON DEEP Q-LEARNING

In a dynamic edge-cloud environment, any changes to the
application profile or mode of operation may cause the
topology of underlying workflow-DAGs to be changed. The
network bandwidth and execution speed of remote devices are
also subjected to dynamic changes causing the environment
parameter (DR, VR) to change as well, causing a direct change
in the reward signal of the underlying MDP. This causes the
estimated Q-values to become invalid in the current context
and requires retraining in the changed environment. A meta-
learning algorithm aims to find the optimal meta-parameters
(θ) that can adapt to a new environment i.e., a new set of
optimal Q-value estimates, in a fewer number of learning steps.
Such a meta-learning setup is often referred to as a few-shot
learning [37] problem.

To address the aforementioned meta-learning problem, we
propose a meta-learning algorithm, called the Deep Meta Q-
learning based task-offloading (DMQTO) which combines the
concepts from first-order meta-learning [37] with the deep
Q-learning [38] approach. We employ the deep Q-learning
method for better sample efficiency as well as having the
advantage of off-policy learning for better exploration. The
proposed meta-learning algorithm is described in the algorithm
[1]. The algorithm consists of two phases, the task-learning
phase, and the meta-learning phase.

A. Task-Learning Phase

The task-learning phase represents the inner loop of the meta-
algorithm. In this phase, a new DQN (Qi : θi), initialized
using the meta-DQN (Qθ : θ), is trained using trajectories or
episodes from the current environment until the loss stabilizes
below a minimum value Lmin. The agent first explores the
environment using the ϵ-greedy strategy for a fixed number of
episodes and stores its experience in a replay buffer as a set of
transitions (D). After enough experience has been collected,
a random sample of transitions (DX

i ) is selected for learning.

DX
i = [Sx, Ax, Rx, S

′

x] (25)

The updated Q-values (Q̃i) are calculated using:

Q̃i(Sx, Ax) = Rx + γ ×max[Qi(S
′

x)] (26)

where, γ represents the discount factor and Qi represents the
Q-function estimated by the current DQN (Qi : θi).

Using Mean Squared Error (MSE) as the loss function, we
obtain the training loss Li

X as:

Li
X =

1

X

X∑
x=1

(Qi(Sx, Ax)− Q̃i(Sx, Ax))
2 (27)

Using a learning rate of α, we update the parameters θi using
Adam-based stochastic gradient descent as:

θi ← θi − αm/(
√
v + µ) (28)

where, µ is small constant (µ ≤ 10−8), m and v represent the
first and second moment vector respectively. We use β1 and
β2 as the exponential decay rates for our moment estimates
thus updating moment vectors at learning step (t) as:

m← β1m+ (1− β1)∇θiLi
X

1− βt
1

(29)

v ← β2v + (1− β2)(∇θiLi
X)2

1− βt
2

(30)

The process of gradient descent is repeated with random
batches of experience (DX

i ) until the training loss reaches
the minimum loss value (Lmin). After the learning iterations
have been completed, we obtain the learned parameters θi and
store them for later use in the meta-learning phase.

After running the task-learning phase for multiple random
environments, we obtain a set of learned parameters B

B = {θi : i ∈ [1, 2, ..., B]} (31)

B. Meta-Learning Phase

The meta-learning phase represents the outer loop of the meta-
algorithm. In this phase, the set of parameters, B learned
from multiple random environments in the task-learning phase,
is used to update the meta parameters. We want the meta-
parameters (θ) to be as close as possible, to all the learned
parameters {θi} so that it takes less number of learning steps
for the meta parameters to converge to new parameters. In
other words, we directly minimize the mean squared error
(LB) between the meta-parameters and the learned parameters,
expressed as:

LB =
1

B

∑
i∈B

1

2
(θ − θi)

2 (32)

We again use gradient descent to perform the minimization of
the MSE Loss (LB). The gradient of LB w.r.t meta-parameters
(θ) can be obtained as follows:

∇θLB = ∇θ
1

B

∑
i∈B

1

2
(θ − θi)

2 =
1

2B

∑
i∈B
∇θ(θ − θi)

2

In second-order meta-learning algorithms like MAML [21],
the parameters learned during the inner loop are assumed
to be dependent on the meta parameters through updates
made in the inner loop. In such a case, during the meta-
learning step, second-order back-propagation through multiple
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gradient update steps, made in the inner loop, becomes a high
computation and memory-intensive task. Hence, in first-order
meta-learning, we assume the learned parameters (θi) to be
independent of the meta-parameters so as to avoid the second-
order gradient computation. Hence, the above gradient reduces
to:

∇θLB =
1

B

∑
i∈B

(θ − θi) (33)

Finally, using a learning rate of β, we update the meta-
parameters as:

θ ← θ − β∇θLB (34)

In the implementation of DMQTO, we consider the batch
of learned parameters (B) to be estimated from a uniformly
sampled batch of random environments (T ). To avoid fine-
tuning DQN in the early phases of meta-learning, we start
with a larger value of minimum loss (Lmin) for the task-
learning phase and reduced it over time. This improves the
training process by avoiding the meta-parameters to move too
close to any particular batch of environment parameters.

Algorithm 1 Deep Meta Q-learning based task-offloading

Require: Hyper-Parameters (α, β,B,X)
1: Randomly initialize a new meta-DQN (Qθ : θ)
2: Set Lmin =∞
3: while Lmin > Lµ do
4: Sample a new batch (T ) containing B number of

random environments
5: Initialize an empty set B for storing learned parameters
6: for i = 1 to B do
7: Set the current environment to Ti
8: Initialize a new DQN (Qi : θi)← (Qθ : θ)
9: Initialize moment vectors m← 0 and v ← 0

10: while not (LX ≤ Lmin) do
11: Explore the current environment using ϵ-greedy

strategy and store the experience in the replay
buffer

12: Sample a batch of X transitions (DX
i ) from the

replay buffer for learning
13: Calculate Q-Updates Q̃i(Sx, Ax) from experience

(DX
i )

14: Obtain inner loss Li
X and use its gradient to update

moment vectors m and v
15: Updated parameters, θi ← θi − αm/(

√
v + µ)

16: end while
17: Add θi to set of learnt parameters B
18: end for
19: Update loss thresholds as: Lmin ← 1

B

∑B
i=1 Li

X

20: Obtain outer loss LB and use its gradient to update
meta-parameters, θ ← θ − β∇θLB

21: end while
22: output DQN (Qθ : θ) as meta-DQN

C. Generalization Bounds

For meta-learning operating in a multi-task setting, the goal is
to produce a meta-algorithm (A) that can take data from mul-
tiple tasks (Ti) and output a task-specific learning algorithm
(A). The meta-learning algorithm is said to be data efficient if
it can produce a task-specific algorithm using a small number
of tasks (n) with fewer data points (m) that are assumed to
originate from a common underlying distribution (P). In such
a case, the quantity of interest is the meta-generalization of A
which describes a relation between the performance of a task-
specific algorithm (A) produced by a meta-algorithm (A), on
any future tasks sampled from P; and the number of training-
tasks (n) and data points per tasks (m). We assume that a
learning task Ti is defined using an independent and identically
distributed sample of m data points, called the support set (S),
defined as:

Si = { (xj , xj) : ∀j ∈ [1,m] } ∼ Dm
i

where, Di ∼ P. The transfer risk (R), as defined in [38], can
be expressed as:

R(A,P) = ED∼P[ES∼Dm [E(x,y)∼D[L(fA(x), y)]]] (35)

The transfer risk expresses the expected loss of models (fA)
produced using algorithm A, on new tasks Ti sampled from
a distribution P and hence, characterizes the generalization
of algorithm A over task distribution P. For a meta-learning
algorithm (A) that produces learning algorithm (A) by op-
timizing loss (L), we express the meta-generalization error
bounds using the definition given in [39] as follows:

Definition 1. For a meta-learning algorithm A that produces
a learning algorithm A using a meta task sample set S of n
tasks (S = {Si : i ∈ [1, n]}), sampled from a distribution
P, the meta-generalization error bound can expressed by the
function B(δ, S) if for any task distribution P and 0 < δ ≤ 1
the following holds with a probability at least (1− δ) :

R(A,P)− L(A,S) < B(δ, S) (36)

where A is obtained from A using a set of tasks S, as:

A = argmin
A∈{A(S)}

L(A,S)

The bounds are obtained in [39] using results from algorithmic
stability in [40]and [41] for the first-order algorithm in a Few-
Shot Classification setting as:

R(A,P(T ))− L(A,S) ≤ O (Ĺ2T́

√
ln(1/δ)

n
+ L2T

1

m
)

where, the loss minimized in the outer loop L(A,S) is
assumed to be an empirical estimator of the true transfer risk.
The quantities L and Ĺ refer to the Lipschitz constant of the
inner and outer loss respectively whereas T and T́ represent
the number of learning steps in the inner loop and outer loop
respectively.
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In the reinforcement learning setup of the DMQTO algorithm,
we note that the inner loop may use multiple batches of
experience replay for updating Q-values until the loss reaches
Lmin at the ith iteration of the inner loop. Considering the
batch size of X , the data points per task (m) can be bounded
by O(X). Also, the number of tasks used in the learning
phase (n) is the same as the size of the learned-parameter set
|B| = B. Hence, we can express the bounds for the DMQTO
algorithm using Definition (1) as follows:

Corollary 1. Let Tα and Tβ represent the number of learning
steps of step-size α and β respectively and let B and X
represent the number of meta-learning environments and size
of replay batch (DX

i ) used per task respectively, the meta-
generalization bounds for DMQTO can be expressed as:

B ⊆ O (Tβ

√
ln(1/δ)

B
+

Tα

X
) (37)

It is evident from the bounds expressed in equation (37) that a
larger sample (B) of meta-learning tasks should result in better
generalization with lower transfer risk. It can also be noted that
as B →∞, the generalization bound does not reduce to zero,
instead, it is bounded by the batch-size (X) used by the inner-
learning algorithm (inner loop). This implies that the DMQTO
algorithm will always have a non-zero gap that arises due to
within-task sample complexity in the task-learning phase.

While using a decremented loss threshold in the task-learning
phase, it should be noted that as Lmin → 0, the agent will
require more batches of experience to fine-tune its Q-value
estimates, causing X → ∞. Although this suggests better
generalization, it might be not possible to reduce the loss all
the way to zero. Hence, we assume that the loss threshold tends
to move towards an arbitrarily small value (Lmin → Lµ).

D. Deployment Phase

In the deployment phase, an application instance first com-
municates the application profile, user preferences, and device
information to the central offloading manager which in turn
initializes a new DQN with meta parameters θ and train
it in the current environment to obtain optimal parameters
θi. The fine-tuned DQN (Qi : θi) is then sent to the user
device and used for inference until any changes in the user
preferences or device parameters are detected, after which the
application requests a new policy in the changed environment.
The deployment algorithm is demonstrated in the algorithm
[2].

During the deployment phase, we start with a learning rate
α = 0.01 and gradually reduce it as the loss becomes smaller.
We also decay the exploration probability ϵ as the training
progresses causing the agent to take greedy actions during later
phases of training. Reducing exploration probability in such a
way causes the Q-value estimates of greedy paths to improve
and stabilize as the training process nears its completion. We
use a linearly decaying exploration probability (ϵ) and an

Algorithm 2 Deployment Algorithm

Require: Hyper-Parameters (α,X)
1: Initialize a new DQN (Qi : θi)← (Qθ : θ)
2: Initialize moment vectors m← 0 and v ← 0
3: while not converged do
4: Explore the current environment using ϵ-greedy strategy

and store the experience in the replay buffer
5: Sample a batch of X transitions (DX

i ) from the replay
buffer for learning

6: Calculate Q-Updates Q̃i(Sx, Ax) from experience
(DX

i ) using (22)
7: Obtain loss Li

X using (27) and update moment vectors
m and v using equations (29) and (30)

8: Updated parameters, θi ← θi − αm/(
√
v + µ)

9: end while
10: Output θi as the learnt parameters

exponentially decaying learning rate (α) in the deployment
phase.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results and per-
formance evaluation of the proposed DMQTO algorithm. All
the experiments were conducted on an Intel i7-6700 processor
with 16GB of memory and were implemented using python-
3.8 with PyTorch-1.10.1+cu102 and TensorFlow-2.9.1 for deep
learning.

A. Experimental Setup

We set up three experiments to measure the overall perfor-
mance of the DMQTO algorithm, each having a different edge-
cloud network topology and a group of application profiles.
To simulate a dynamic environment, we first define a joint
uniform distribution (P) over all the environment parameters
that can be randomized.

P ∼ {DR, VR,W, δe, δt}

A set of random environments (T ) is sampled from a uniform
distribution of environments (P) for each task-learning phase.
In such a distribution, each of the parameters in P is chosen
uniformly within a predefined range of values. The range of
each environment parameter is presented in Table II.

The set of workflow DAGs (W ) is generated randomly for
each application based on its profile and user preference while
δe and δt are chosen based on all the modes of operation
that the application can support. We consider different values
of node-density (Gn), height (Gh) and maximum branch
factor (Gb) across multiple applications and assume that the
task sizes (vi) take values in range [106, 107] CPU cycles,
whereas data dependencies (di,j) take values within the range
of [10, 30] MB. The cost per unit energy CE is set to 1.34
and the cost per unit time CT is set to 0.2. A summary of
experimental parameters is presented in Table III.
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Table II: Environment Parameters

Parameter Range of Values
VE(liot) 2.0 mJ
VE(ledge) 1.0 mJ
VE(lcloud) 0.5 mJ
DE(liot) 0.1 mJ
DE(ledge) 0.05 mJ
DE(lcloud) 0.02 mJ
VR(liot) (0.010, 0.015) mS
VR(ledge) (0.005, 0.009) mS
VR(lcloud) (0.002, 0.005) mS

DR(liot, ledge) (2.0, 2.5) mS
DR(ledge, ledge) (1.0, 1.5) mS
DR(ledge, lcloud) (1.0, 1.5) mS
DR(lcloud, lcloud) (0.5, 1.0) mS

Figure 7: edge-cloud network architecture used in experiments

Table III: Experimental Parameters

Experiment E C Gn Gh Gb

A 1 1 (5, 10) (2, 10) 3
B 3 2 (10, 15) (3, 15) 6
C 5 2 (15, 20) (4, 20) 8

As shown in Figure 7, we consider three different edge-cloud
network architectures across experiments A, B, and C with
varying numbers of Edge (E) and Cloud (C) servers.

To learn the Q-function, we employ an ensemble of multi-
head attention-based encoders followed by a fully-connected
dense neural network containing four layers consisting of 256
neurons each, with ELU (Exponential Linear Unit) activation
at each layer as shown in Figure 8. The state vector is
transformed into a sequence using an appropriate embedding
before it is fed to the DQN. This is achieved by defining
a topological ordering on the nodes of the workflow DAG.
If two or more tasks are at the same height, the task with
higher task size (Vi) is ordered before tasks with a lower
task size. As shown in Figure 9, the features of each task in

the sequence include its task size (vi), data dependency to
other tasks (di,j) and its partial offloading location (pi). The
time-step information (h) is appended to the encoder output
i.e., after the feed forward and normalization layers.

Figure 8: Multi-head attention-based DQN architecture

Figure 9: Task-Embedding for a sample workflow DAG: each
column represents a single time-step in the sequence while
the rows represent the features: vi represents the task size,
di,j represents the data-dependency and pi represents the
offloading location.

B. Performance Evaluation

The convergence of the meta-training phase with four different
batch sizes (B) is shown in Figure 10. It is noted that using
a larger batch size in the meta-learning phase results in better
minimization of the meta-loss and takes a lower number of
learning steps to converge. Figure 11 shows the effect of
environment scale on meta-convergence with fixed meta batch
size B.
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The convergence performance of the meta-initialization
method is shown in Figure 14. We compare the convergence
performance of meta-initialization method with two other
initialization methods:

• Pre-Trained: a DQN trained on random environments
• Random Initialization: a DQN initialized randomly

Figure 10: Meta-Training Loss in experiment A for various
batch sizes (B)

Figure 11: Effect of scaling on meta-training: loss across
experiments of increasing scale with fixed meta batch size
(B = 128)

For validation, we use a set of frozen environments containing
fixed workflow-DAG with topology similar to that in the
corresponding training environments. We define the average
validation cost improvement (V) in the total offloading cost for
the currently trained scheme (Sθ) over no-offloading scheme
(S0) for the set of validation workflows (Wv), defined as:

V(θ) =
1

|Wv|
∑

w∈Wv

U(w, p0)− U(w, pθ)

U(w, p0)
(38)

where, U(w, p0) represents the cost achieved by no-offloading
scheme (S0) and U(w, pθ) represents the cost achieved for the
offloading solution produced by currently trained scheme (Sθ).

The validation cost improvement captures the reduction in
offloading cost achieved by offloading solutions produced by
the trained scheme over the no-offloading scheme. We use a
single validation set for each experiment which consists of
20 different random environments with frozen parameters P
where each environment has 100 unique validation workflows.

As shown in Figure 14, the DMQTO meta-initialization
method allows for faster convergence in a fewer number of
steps as compared to the other two initialization methods. It
can be noted from Figure 12 that the loss observed by DQNs

Figure 12: Training loss comparison for meta-initialized and
randomly initialized parameters during deployment phase

using the meta-initialization method is quite low as compared
to random-initialization. This allows the meta-DQNs to con-
verge faster, requiring fewer learning steps to reach the same
level of performance when compared to other initialization
methods.

Figure 13: Comparison of average cost improvement percent-
age (J ) for different offloading schemes under 3 modes of
operation for the experiment (C)

To observe the effect of environment changes on offloading
cost, we consider a single application running in three different
modes of operation and subject it to random environment
changes. The environment parameters are chosen randomly
from within the range as defined in Table II. Figure 15
shows the offloading cost as the DQN is being trained using
the deployment algorithm over three episodes of environment
randomization.

To measure the performance of trained DQNs, we use base-
lines obtained using the fine-tuned multi-layer perceptron
(MLP) based DQN [22] and Double-DQN [23] algorithms.
We also compare the results with two other non-intelligent
offloading schemes namely, Edge-Only offloading and Cloud-
Only offloading. To compare the performance of different
offloading schemes under each mode of operation, we define
the average cost improvement percentage (J ) in the total
offloading cost for a given scheme (S) over No-Offloading
scheme (S0) for a set of workflows (W), defined as:
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Figure 14: Validation cost improvement for policy initialization methods

Figure 15: Offloading cost reduction for an application running in 3 different modes of operation in changing environments

Figure 16: Convergence performance under different meta-initialized methods
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Table IV: Differences in existing meta-learning based methods

Method MRLCO MELO MR-DRO DMQTO (ours)
Optimization parameter execution time execution time execution time, energy consumption execution time, energy consumption

RL-Algorithm (inner loop) Proximal Policy Optimization Q-Learning Q-Learning Q-Learning
No. of offloading locations fixed (2) fixed (2) fixed (3) variable (≥3)

Task-model DAG Sequence Sequence DAG
Neural Network architecture Seq2Seq LSTM MLP MLP Multi-Head attention encoder

J(S) =
100

|W|
∑
w∈W

U(w, p0)− U(w, p)

U(w, p0)
(39)

where, U(w, p0) represents the cost achieved by no-offloading
scheme (S0) and U(w, p) represents the cost achieved for the
offloading solution produced by current scheme (S).

As seen in Figure 13, the average cost improvement (%)
in total offloading cost over the no-offloading scheme is the
largest in the DMQTO algorithm which suggests that DMQTO
achieves lower cost than any other scheme which is a direct
consequence of faster convergence.

We have also compared our algorithm against compatible
meta-learning methods in the existing literature such as
MRLCO [21], MELO [52], and MR-DRO [53], all of which
use first-order meta-learning. The comparison is based on a
restricted environment model since the existing schemes do
not capture the scale of the environment and/or the application
task model (DAG-based) as used in our experiments. Table
IV captures the difference between various existing meta-
learning-based methods.

For comparison against the MRLCO and MELO schemes,
we consider only the low-latency mode with a specialized
environment that contains only one edge server since both of
these schemes consider binary offloading and optimize only
the execution time of tasks. Furthermore, the MELO scheme
considers sequential tasks only which can be represented by
DAGs with a maximum branch factor of 1. For comparison
with the MR-DRO scheme, we consider a single edge and
a single cloud server with sequential tasks only. Figure 16
compares the convergence performance of meta-initialized net-
works using the MRLCO, MELO, and MR-DRO schemes over
the DMQTO scheme. The DMQTO scheme performs better
than the MRLCO scheme in the early stages of fine-tuning
which can be attributed to the smaller size of the multi-head
attention-based DQN used in the DMQTO scheme as opposed
to a larger seq2seq LSTM encoder-decoder architecture used
in the MRLCO scheme. However, given enough training time,
both schemes can achieve equivalent performance. The MELO
scheme is designed for binary-offloading for the sequential
task models instead of the DAG-based task model and uses
simple multi-layer perceptron (MLP) based DQN. Our scheme
performs better than MELO because of the use of multi-head
attention-based architecture that can better capture sequential
data. The same can be stated for MR-DRO which also uses
MLP-based DQN and is designed for sequential task models
instead of DAG-based task models.

C. Computational Complexity

Table V: Average training time (in minutes) for the deployment
algorithm

Experiment Random-Initialization Pre-trained Meta-Initialization
A 12.66 8.95 5.06
B 20.32 13.33 8.41
C 31.87 20.52 12.42

Due to inherent randomness in Deep RL algorithms, it is
difficult to capture the time complexity of such algorithms
accurately. Table V shows the average time for our deployment
algorithm (Algorithm [2]) for random initialized, pre-trained
initialized, and meta-initialized DQN for all three experiments.
The experiments are conducted on an Intel i7-6700 processor
with 16GB of memory. It can be noted that the CPU time is
comparatively less for meta-initialization as compared to other
initialization methods.

Modern Reinforcement learning libraries provide vectorized
environments and parallel implementation of RL algorithms
that can significantly improve training time. However, we do
not employ parallelism or use vectorized environments for
training. The results presented in this paper are based on
simple non-vectorized environments without employing any
parallelism.

VI. CONCLUSION

In this article, we proposed an improved framework for formu-
lating multi-task offloading problems in dynamic edge-cloud
systems. In our formulation, we use directed acyclic graphs
(DAGs) to model the application workflows and consider that
the offloading locations span across multiple edge and cloud
servers. We presented the DMQTO algorithm that uses meta-
learning techniques to improve the learning process in dynamic
edge-cloud environments by reducing the time required to train
an optimal offloading policy. Through the experiments, it was
observed that the proposed DMQTO algorithm consistently
achieved the lowest offloading cost in a variety of dynamic
scenarios as compared to other methods.

In recent years, resource scheduling in edge computing has
attracted widespread interest from industry and academia. In
the future, we plan to expand the DMQTO framework to
include resource scheduling as well. In addition, we shall try
to improve the meta-learning process so that it can further
reduce the training time and improve overall efficiency.
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