44,265 research outputs found

    Assessing the Potential of Classical Q-learning in General Game Playing

    Get PDF
    After the recent groundbreaking results of AlphaGo and AlphaZero, we have seen strong interests in deep reinforcement learning and artificial general intelligence (AGI) in game playing. However, deep learning is resource-intensive and the theory is not yet well developed. For small games, simple classical table-based Q-learning might still be the algorithm of choice. General Game Playing (GGP) provides a good testbed for reinforcement learning to research AGI. Q-learning is one of the canonical reinforcement learning methods, and has been used by (Banerjee &\& Stone, IJCAI 2007) in GGP. In this paper we implement Q-learning in GGP for three small-board games (Tic-Tac-Toe, Connect Four, Hex)\footnote{source code: https://github.com/wh1992v/ggp-rl}, to allow comparison to Banerjee et al.. We find that Q-learning converges to a high win rate in GGP. For the ϵ\epsilon-greedy strategy, we propose a first enhancement, the dynamic ϵ\epsilon algorithm. In addition, inspired by (Gelly &\& Silver, ICML 2007) we combine online search (Monte Carlo Search) to enhance offline learning, and propose QM-learning for GGP. Both enhancements improve the performance of classical Q-learning. In this work, GGP allows us to show, if augmented by appropriate enhancements, that classical table-based Q-learning can perform well in small games.Comment: arXiv admin note: substantial text overlap with arXiv:1802.0594

    Toward Interpretable Deep Reinforcement Learning with Linear Model U-Trees

    Full text link
    Deep Reinforcement Learning (DRL) has achieved impressive success in many applications. A key component of many DRL models is a neural network representing a Q function, to estimate the expected cumulative reward following a state-action pair. The Q function neural network contains a lot of implicit knowledge about the RL problems, but often remains unexamined and uninterpreted. To our knowledge, this work develops the first mimic learning framework for Q functions in DRL. We introduce Linear Model U-trees (LMUTs) to approximate neural network predictions. An LMUT is learned using a novel on-line algorithm that is well-suited for an active play setting, where the mimic learner observes an ongoing interaction between the neural net and the environment. Empirical evaluation shows that an LMUT mimics a Q function substantially better than five baseline methods. The transparent tree structure of an LMUT facilitates understanding the network's learned knowledge by analyzing feature influence, extracting rules, and highlighting the super-pixels in image inputs.Comment: This paper is accepted by ECML-PKDD 201

    MSC: A Dataset for Macro-Management in StarCraft II

    Full text link
    Macro-management is an important problem in StarCraft, which has been studied for a long time. Various datasets together with assorted methods have been proposed in the last few years. But these datasets have some defects for boosting the academic and industrial research: 1) There're neither standard preprocessing, parsing and feature extraction procedures nor predefined training, validation and test set in some datasets. 2) Some datasets are only specified for certain tasks in macro-management. 3) Some datasets are either too small or don't have enough labeled data for modern machine learning algorithms such as deep neural networks. So most previous methods are trained with various features, evaluated on different test sets from the same or different datasets, making it difficult to be compared directly. To boost the research of macro-management in StarCraft, we release a new dataset MSC based on the platform SC2LE. MSC consists of well-designed feature vectors, pre-defined high-level actions and final result of each match. We also split MSC into training, validation and test set for the convenience of evaluation and comparison. Besides the dataset, we propose a baseline model and present initial baseline results for global state evaluation and build order prediction, which are two of the key tasks in macro-management. Various downstream tasks and analyses of the dataset are also described for the sake of research on macro-management in StarCraft II. Homepage: https://github.com/wuhuikai/MSC.Comment: Homepage: https://github.com/wuhuikai/MS

    Using Monte Carlo Search With Data Aggregation to Improve Robot Soccer Policies

    Full text link
    RoboCup soccer competitions are considered among the most challenging multi-robot adversarial environments, due to their high dynamism and the partial observability of the environment. In this paper we introduce a method based on a combination of Monte Carlo search and data aggregation (MCSDA) to adapt discrete-action soccer policies for a defender robot to the strategy of the opponent team. By exploiting a simple representation of the domain, a supervised learning algorithm is trained over an initial collection of data consisting of several simulations of human expert policies. Monte Carlo policy rollouts are then generated and aggregated to previous data to improve the learned policy over multiple epochs and games. The proposed approach has been extensively tested both on a soccer-dedicated simulator and on real robots. Using this method, our learning robot soccer team achieves an improvement in ball interceptions, as well as a reduction in the number of opponents' goals. Together with a better performance, an overall more efficient positioning of the whole team within the field is achieved
    corecore