6 research outputs found

    Deep reinforcement learning for multi-domain dialogue systems

    Get PDF
    Standard deep reinforcement learning methods such as Deep Q-Networks (DQN) for multiple tasks (domains) face scalability problems. We propose a method for multi-domain dialogue policy learning---termed NDQN, and apply it to an information-seeking spoken dialogue system in the domains of restaurants and hotels. Experimental results comparing DQN (baseline) versus NDQN (proposed) using simulations report that our proposed method exhibits better scalability and is promising for optimising the behaviour of multi-domain dialogue systems

    Scaling up deep reinforcement learning for multi-domain dialogue systems

    Get PDF
    Standard deep reinforcement learning methods such as Deep Q-Networks (DQN) for multiple tasks (domains) face scalability problems due to large search spaces. This paper proposes a three-stage method for multi-domain dialogue policy learning—termed NDQN, and applies it to an information-seeking spoken dialogue system in the domains of restaurants and hotels. In this method, the first stage does multi-policy learning via a network of DQN agents; the second makes use of compact state representations by compressing raw inputs; and the third stage applies a pre-training phase for bootstraping the behaviour of agents in the network. Experimental results comparing DQN (baseline) versus NDQN (proposed) using simulations report that the proposed method exhibits better scalability and is promising for optimising the behaviour of multi-domain dialogue systems. An additional evaluation reports that the NDQN agents outperformed a K-Nearest Neighbour baseline in task success and dialogue length, yielding more efficient and successful dialogues

    Domain transfer for deep natural language generation from abstract meaning representations

    Get PDF
    Stochastic natural language generation systems that are trained from labelled datasets are often domainspecific in their annotation and in their mapping from semantic input representations to lexical-syntactic outputs. As a result, learnt models fail to generalize across domains, heavily restricting their usability beyond single applications. In this article, we focus on the problem of domain adaptation for natural language generation. We show how linguistic knowledge from a source domain, for which labelled data is available, can be adapted to a target domain by reusing training data across domains. As a key to this, we propose to employ abstract meaning representations as a common semantic representation across domains. We model natural language generation as a long short-term memory recurrent neural network encoderdecoder, in which one recurrent neural network learns a latent representation of a semantic input, and a second recurrent neural network learns to decode it to a sequence of words. We show that the learnt representations can be transferred across domains and can be leveraged effectively to improve training on new unseen domains. Experiments in three different domains and with six datasets demonstrate that the lexical-syntactic constructions learnt in one domain can be transferred to new domains and achieve up to 75-100% of the performance of in-domain training. This is based on objective metrics such as BLEU and semantic error rate and a subjective human rating study. Training a policy from prior knowledge from a different domain is consistently better than pure in-domain training by up to 10%

    Deep Active Learning for Dialogue Generation

    Full text link
    We propose an online, end-to-end, neural generative conversational model for open-domain dialogue. It is trained using a unique combination of offline two-phase supervised learning and online human-in-the-loop active learning. While most existing research proposes offline supervision or hand-crafted reward functions for online reinforcement, we devise a novel interactive learning mechanism based on hamming-diverse beam search for response generation and one-character user-feedback at each step. Experiments show that our model inherently promotes the generation of semantically relevant and interesting responses, and can be used to train agents with customized personas, moods and conversational styles.Comment: Accepted at 6th Joint Conference on Lexical and Computational Semantics (*SEM) 2017 (Previously titled "Online Sequence-to-Sequence Active Learning for Open-Domain Dialogue Generation" on ArXiv

    Inter-annotator agreement using the Conversation Analysis Modelling Schema, for dialogue

    Get PDF
    We present the Conversation Analysis Modeling Schema (CAMS), a novel dialogue labeling schema that combines the Conversation Analysis concept of Adjacency Pairs, with Dialogue Acts. The aim is to capture both the semantic and syntactic structure of dialogue, in a format that is independent of the domain or topic, and which facilitates the computational modeling of dialogue. A labeling task undertaken by novice annotators is used to evaluate its efficacy on a selection of task-oriented and non-task-oriented dialogs, and to measure inter-annotator agreement. To deepen the “human-factors” analysis we also record and examine users’ self-reported confidence scores and average utterance annotation times. Inter-annotator agreement is shown to be higher for task-oriented dialogs than non-task-oriented, though the structure of the dialogue itself has a more significant impact. We further examine the assumptions around expected agreement for two weighted agreement coefficients, Alpha and Beta, and show that annotators assign labels using similar probability distributions, small variations can result in large differences in agreement values between biased and unbiased measures
    corecore