4 research outputs found

    Improving deep reinforcement learning training convergence using fuzzy logic for autonomous mobile robot navigation

    Get PDF
    Autonomous robotic navigation has become hotspot research, particularly in complex environments, where inefficient exploration can lead to inefficient navigation. Previous approaches often had a wide range of assumptions and prior knowledge. Adaptations of machine learning (ML) approaches, especially deep learning, play a vital role in the applications of navigation, detection, and prediction about robotic analysis. Further development is needed due to the fast growth of urban megacities. The main problem of training convergence time in deep reinforcement learning (DRL) for mobile robot navigation refers to the amount of time it takes for the agent to learn an optimal policy through trial and error and is caused by the need to collect a large amount of data and computational demands of training deep neural networks. Meanwhile, the assumption of reward in DRL for navigation is problematic as it can be difficult or impossible to define a clear reward function in real-world scenarios, making it challenging to train the agent to navigate effectively. This paper proposes a neuro-symbolic approach that combine the strengths of deep reinforcement learning and fuzzy logic to address the challenges of deep reinforcement learning for mobile robot navigation in terms of training time and the assumption of reward by incorporating symbolic representations to guide the learning process, and inferring the underlying objectives of the task which is expected to reduce the training convergence time

    Obtaining Robust Control and Navigation Policies for Multi-Robot Navigation via Deep Reinforcement Learning

    Full text link
    Multi-robot navigation is a challenging task in which multiple robots must be coordinated simultaneously within dynamic environments. We apply deep reinforcement learning (DRL) to learn a decentralized end-to-end policy which maps raw sensor data to the command velocities of the agent. In order to enable the policy to generalize, the training is performed in different environments and scenarios. The learned policy is tested and evaluated in common multi-robot scenarios like switching a place, an intersection and a bottleneck situation. This policy allows the agent to recover from dead ends and to navigate through complex environments.Comment: 13 page

    Visual Guidance for Unmanned Aerial Vehicles with Deep Learning

    Full text link
    Unmanned Aerial Vehicles (UAVs) have been widely applied in the military and civilian domains. In recent years, the operation mode of UAVs is evolving from teleoperation to autonomous flight. In order to fulfill the goal of autonomous flight, a reliable guidance system is essential. Since the combination of Global Positioning System (GPS) and Inertial Navigation System (INS) systems cannot sustain autonomous flight in some situations where GPS can be degraded or unavailable, using computer vision as a primary method for UAV guidance has been widely explored. Moreover, GPS does not provide any information to the robot on the presence of obstacles. Stereo cameras have complex architecture and need a minimum baseline to generate disparity map. By contrast, monocular cameras are simple and require less hardware resources. Benefiting from state-of-the-art Deep Learning (DL) techniques, especially Convolutional Neural Networks (CNNs), a monocular camera is sufficient to extrapolate mid-level visual representations such as depth maps and optical flow (OF) maps from the environment. Therefore, the objective of this thesis is to develop a real-time visual guidance method for UAVs in cluttered environments using a monocular camera and DL. The three major tasks performed in this thesis are investigating the development of DL techniques and monocular depth estimation (MDE), developing real-time CNNs for MDE, and developing visual guidance methods on the basis of the developed MDE system. A comprehensive survey is conducted, which covers Structure from Motion (SfM)-based methods, traditional handcrafted feature-based methods, and state-of-the-art DL-based methods. More importantly, it also investigates the application of MDE in robotics. Based on the survey, two CNNs for MDE are developed. In addition to promising accuracy performance, these two CNNs run at high frame rates (126 fps and 90 fps respectively), on a single modest power Graphical Processing Unit (GPU). As regards the third task, the visual guidance for UAVs is first developed on top of the designed MDE networks. To improve the robustness of UAV guidance, OF maps are integrated into the developed visual guidance method. A cross-attention module is applied to fuse the features learned from the depth maps and OF maps. The fused features are then passed through a deep reinforcement learning (DRL) network to generate the policy for guiding the flight of UAV. Additionally, a simulation framework is developed which integrates AirSim, Unreal Engine and PyTorch. The effectiveness of the developed visual guidance method is validated through extensive experiments in the simulation framework

    Deep Reinforcement Learning for Robot Navigation in Unstructured Environments

    No full text
    This thesis is focused on deep reinforcement learning for mobile robot navigation in unstructured environments. Autonomous navigation has been mainly tackled through map-based algorithms, which are ineffective in many situations like exploration or rescue missions. For mapless scenarios, the simultaneous localization and planning (SLAM) represents a cornerstone on which a wide variety of algorithms are built. However the difficulty of maintaining a map from sensory inputs, typical of these methods, is leading the research community to look for alternatives. Deep reinforcement learning aims at solving the autonomous navigation problem end-to-end, by directly mapping high-dimensional inputs to actions, without the need for a model of the environment. In this thesis, a model-free reinforcement learning approach is adopted: a variant of the tabular Q-learning algorithm, called deep Q-learning, uses a deep neural network to approximate the action-value function and to map states into velocity commands, without the need of an expert or supervisor. The learning model is trained in simulation on TurtleBot3 and Curiosity mobile robots in two different environments. After that, the neural network trained on TurtleBot3 is transferred on Curiosity and then fine-tuned on new navigation environments. The results are then compared to those obtained by training the model from scratch, with random initialization of the parameters: this comparison shows how, thanks to the pre-training, the rover manages to reach on average a higher number of targets per episode throughout the entire simulation
    corecore