3 research outputs found

    Deep Policies for Width-Based Planning in Pixel Domains

    Full text link
    Width-based planning has demonstrated great success in recent years due to its ability to scale independently of the size of the state space. For example, Bandres et al. (2018) introduced a rollout version of the Iterated Width algorithm whose performance compares well with humans and learning methods in the pixel setting of the Atari games suite. In this setting, planning is done on-line using the "screen" states and selecting actions by looking ahead into the future. However, this algorithm is purely exploratory and does not leverage past reward information. Furthermore, it requires the state to be factored into features that need to be pre-defined for the particular task, e.g., the B-PROST pixel features. In this work, we extend width-based planning by incorporating an explicit policy in the action selection mechanism. Our method, called π\pi-IW, interleaves width-based planning and policy learning using the state-actions visited by the planner. The policy estimate takes the form of a neural network and is in turn used to guide the planning step, thus reinforcing promising paths. Surprisingly, we observe that the representation learned by the neural network can be used as a feature space for the width-based planner without degrading its performance, thus removing the requirement of pre-defined features for the planner. We compare π\pi-IW with previous width-based methods and with AlphaZero, a method that also interleaves planning and learning, in simple environments, and show that π\pi-IW has superior performance. We also show that π\pi-IW algorithm outperforms previous width-based methods in the pixel setting of Atari games suite.Comment: In Proceedings of the 29th International Conference on Automated Planning and Scheduling (ICAPS 2019). arXiv admin note: text overlap with arXiv:1806.0589

    Generalized Planning as Heuristic Search: A new planning search-space that leverages pointers over objects

    Full text link
    Planning as heuristic search is one of the most successful approaches to classical planning but unfortunately, it does not extend trivially to Generalized Planning (GP). GP aims to compute algorithmic solutions that are valid for a set of classical planning instances from a given domain, even if these instances differ in the number of objects, the number of state variables, their domain size, or their initial and goal configuration. The generalization requirements of GP make it impractical to perform the state-space search that is usually implemented by heuristic planners. This paper adapts the planning as heuristic search paradigm to the generalization requirements of GP, and presents the first native heuristic search approach to GP. First, the paper introduces a new pointer-based solution space for GP that is independent of the number of classical planning instances in a GP problem and the size of those instances (i.e. the number of objects, state variables and their domain sizes). Second, the paper defines a set of evaluation and heuristic functions for guiding a combinatorial search in our new GP solution space. The computation of these evaluation and heuristic functions does not require grounding states or actions in advance. Therefore our GP as heuristic search approach can handle large sets of state variables with large numerical domains, e.g.~integers. Lastly, the paper defines an upgraded version of our novel algorithm for GP called Best-First Generalized Planning (BFGP), that implements a best-first search in our pointer-based solution space, and that is guided by our evaluation/heuristic functions for GP.Comment: Under review in the Artificial Intelligence Journal (AIJ
    corecore