3,594 research outputs found

    Deep Learning Methods for Calibrated Photometric Stereo and Beyond

    Full text link
    Photometric stereo recovers the surface normals of an object from multiple images with varying shading cues, i.e., modeling the relationship between surface orientation and intensity at each pixel. Photometric stereo prevails in superior per-pixel resolution and fine reconstruction details. However, it is a complicated problem because of the non-linear relationship caused by non-Lambertian surface reflectance. Recently, various deep learning methods have shown a powerful ability in the context of photometric stereo against non-Lambertian surfaces. This paper provides a comprehensive review of existing deep learning-based calibrated photometric stereo methods. We first analyze these methods from different perspectives, including input processing, supervision, and network architecture. We summarize the performance of deep learning photometric stereo models on the most widely-used benchmark data set. This demonstrates the advanced performance of deep learning-based photometric stereo methods. Finally, we give suggestions and propose future research trends based on the limitations of existing models.Comment: 19 pages, 11 figures, 4 table

    Photometric Depth Super-Resolution

    Full text link
    This study explores the use of photometric techniques (shape-from-shading and uncalibrated photometric stereo) for upsampling the low-resolution depth map from an RGB-D sensor to the higher resolution of the companion RGB image. A single-shot variational approach is first put forward, which is effective as long as the target's reflectance is piecewise-constant. It is then shown that this dependency upon a specific reflectance model can be relaxed by focusing on a specific class of objects (e.g., faces), and delegate reflectance estimation to a deep neural network. A multi-shot strategy based on randomly varying lighting conditions is eventually discussed. It requires no training or prior on the reflectance, yet this comes at the price of a dedicated acquisition setup. Both quantitative and qualitative evaluations illustrate the effectiveness of the proposed methods on synthetic and real-world scenarios.Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2019. First three authors contribute equall

    PS-Transformer: Learning Sparse Photometric Stereo Network using Self-Attention Mechanism

    Full text link
    Existing deep calibrated photometric stereo networks basically aggregate observations under different lights based on the pre-defined operations such as linear projection and max pooling. While they are effective with the dense capture, simple first-order operations often fail to capture the high-order interactions among observations under small number of different lights. To tackle this issue, this paper presents a deep sparse calibrated photometric stereo network named {\it PS-Transformer} which leverages the learnable self-attention mechanism to properly capture the complex inter-image interactions. PS-Transformer builds upon the dual-branch design to explore both pixel-wise and image-wise features and individual feature is trained with the intermediate surface normal supervision to maximize geometric feasibility. A new synthetic dataset named CyclesPS+ is also presented with the comprehensive analysis to successfully train the photometric stereo networks. Extensive results on the publicly available benchmark datasets demonstrate that the surface normal prediction accuracy of the proposed method significantly outperforms other state-of-the-art algorithms with the same number of input images and is even comparable to that of dense algorithms which input 10Ă—\times larger number of images.Comment: BMVC2021. Code and Supplementary are available at https://github.com/satoshi-ikehata/PS-Transformer-BMVC202
    • …
    corecore