10,236 research outputs found

    Deep Ordinal Reinforcement Learning

    Full text link
    Reinforcement learning usually makes use of numerical rewards, which have nice properties but also come with drawbacks and difficulties. Using rewards on an ordinal scale (ordinal rewards) is an alternative to numerical rewards that has received more attention in recent years. In this paper, a general approach to adapting reinforcement learning problems to the use of ordinal rewards is presented and motivated. We show how to convert common reinforcement learning algorithms to an ordinal variation by the example of Q-learning and introduce Ordinal Deep Q-Networks, which adapt deep reinforcement learning to ordinal rewards. Additionally, we run evaluations on problems provided by the OpenAI Gym framework, showing that our ordinal variants exhibit a performance that is comparable to the numerical variations for a number of problems. We also give first evidence that our ordinal variant is able to produce better results for problems with less engineered and simpler-to-design reward signals.Comment: replaced figures for better visibility, added github repository, more details about source of experimental results, updated target value calculation for standard and ordinal Deep Q-Networ

    Discretizing Continuous Action Space for On-Policy Optimization

    Full text link
    In this work, we show that discretizing action space for continuous control is a simple yet powerful technique for on-policy optimization. The explosion in the number of discrete actions can be efficiently addressed by a policy with factorized distribution across action dimensions. We show that the discrete policy achieves significant performance gains with state-of-the-art on-policy optimization algorithms (PPO, TRPO, ACKTR) especially on high-dimensional tasks with complex dynamics. Additionally, we show that an ordinal parameterization of the discrete distribution can introduce the inductive bias that encodes the natural ordering between discrete actions. This ordinal architecture further significantly improves the performance of PPO/TRPO.Comment: Accepted at AAAI Conference on Artificial Intelligence (2020) in New York, NY, USA. An open source implementation can be found at https://github.com/robintyh1/onpolicybaseline

    The Archimedean trap: Why traditional reinforcement learning will probably not yield AGI

    Get PDF
    After generalizing the Archimedean property of real numbers in such a way as to make it adaptable to non-numeric structures, we demonstrate that the real numbers cannot be used to accurately measure non-Archimedean structures. We argue that, since an agent with Artificial General Intelligence (AGI) should have no problem engaging in tasks that inherently involve non-Archimedean rewards, and since traditional reinforcement learning rewards are real numbers, therefore traditional reinforcement learning probably will not lead to AGI. We indicate two possible ways traditional reinforcement learning could be altered to remove this roadblock

    Rethinking the Discount Factor in Reinforcement Learning: A Decision Theoretic Approach

    Full text link
    Reinforcement learning (RL) agents have traditionally been tasked with maximizing the value function of a Markov decision process (MDP), either in continuous settings, with fixed discount factor γ<1\gamma < 1, or in episodic settings, with γ=1\gamma = 1. While this has proven effective for specific tasks with well-defined objectives (e.g., games), it has never been established that fixed discounting is suitable for general purpose use (e.g., as a model of human preferences). This paper characterizes rationality in sequential decision making using a set of seven axioms and arrives at a form of discounting that generalizes traditional fixed discounting. In particular, our framework admits a state-action dependent "discount" factor that is not constrained to be less than 1, so long as there is eventual long run discounting. Although this broadens the range of possible preference structures in continuous settings, we show that there exists a unique "optimizing MDP" with fixed γ<1\gamma < 1 whose optimal value function matches the true utility of the optimal policy, and we quantify the difference between value and utility for suboptimal policies. Our work can be seen as providing a normative justification for (a slight generalization of) Martha White's RL task formalism (2017) and other recent departures from the traditional RL, and is relevant to task specification in RL, inverse RL and preference-based RL.Comment: 8 pages + 1 page supplement. In proceedings of AAAI 2019. Slides, poster and bibtex available at https://silviupitis.com/#rethinking-the-discount-factor-in-reinforcement-learning-a-decision-theoretic-approac
    • …
    corecore