2,270 research outputs found

    Applying Deep Learning Techniques to the Analysis of Android APKs

    Get PDF
    Malware targeting mobile devices is a pervasive problem in modern life and as such tools to detect and classify malware are of great value. This paper seeks to demonstrate the effectiveness of Deep Learning Techniques, specifically Convolutional Neural Networks, in detecting and classifying malware targeting the Android operating system. Unlike many current detection techniques, which require the use of relatively rigid features to aid in detection, deep neural networks are capable of automatically learning flexible features which may be more resilient to obfuscation. We present a parsing for extracting sequences of API calls which can be used to describe a hypothetical execution of a given application. We then show how to use this sequence of API calls to successfully classify Android malware using a Convolutional Neural Network

    R2-D2: ColoR-inspired Convolutional NeuRal Network (CNN)-based AndroiD Malware Detections

    Full text link
    The influence of Deep Learning on image identification and natural language processing has attracted enormous attention globally. The convolution neural network that can learn without prior extraction of features fits well in response to the rapid iteration of Android malware. The traditional solution for detecting Android malware requires continuous learning through pre-extracted features to maintain high performance of identifying the malware. In order to reduce the manpower of feature engineering prior to the condition of not to extract pre-selected features, we have developed a coloR-inspired convolutional neuRal networks (CNN)-based AndroiD malware Detection (R2-D2) system. The system can convert the bytecode of classes.dex from Android archive file to rgb color code and store it as a color image with fixed size. The color image is input to the convolutional neural network for automatic feature extraction and training. The data was collected from Jan. 2017 to Aug 2017. During the period of time, we have collected approximately 2 million of benign and malicious Android apps for our experiments with the help from our research partner Leopard Mobile Inc. Our experiment results demonstrate that the proposed system has accurate security analysis on contracts. Furthermore, we keep our research results and experiment materials on http://R2D2.TWMAN.ORG.Comment: Verison 2018/11/15, IEEE BigData 2018, Seattle, WA, USA, Dec 10-13, 2018. (Accepted
    • …
    corecore