849 research outputs found

    Histogram of Oriented Gradients meet deep learning : A novel multi-task deep network for 2D surgical image semantic segmentation

    Get PDF
    Acknowledgment This research was funded in whole, or in part, by the Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS)[203145/Z/16/Z]; the Engineering and Physical Sciences Research Council (EPSRC) [EP/P027938/1, EP/R004080/1, EP/P012841/1]; and the Royal Academy of Engineering Chair in Emerging Technologies Scheme; and EndoMapper project by Horizon 2020 FET (GA 863146). For the purpose of open access, the author has applied a CC BY public copyright licence to any author accepted manuscript version arising from this submission.Peer reviewedproo

    Reference-guided Pseudo-Label Generation for Medical Semantic Segmentation

    Get PDF
    Producing densely annotated data is a difficult and tedious task for medical imaging applications. To address this prob- lem, we propose a novel approach to generate supervision for semi-supervised semantic segmentation. We argue that visu- ally similar regions between labeled and unlabeled images likely contain the same semantics and therefore should share their label. Following this thought, we use a small number of labeled images as reference material and match pixels in an unlabeled image to the semantics of the best fitting pixel in a reference set. This way, we avoid pitfalls such as confirma- tion bias, common in purely prediction-based pseudo-labeling. Since our method does not require any architectural changes or accompanying networks, one can easily insert it into existing frameworks. We achieve the same performance as a standard fully supervised model on X-ray anatomy segmentation, albeit 95% fewer labeled images. Aside from an in-depth analy- sis of different aspects of our proposed method, we further demonstrate the effectiveness of our reference-guided learning paradigm by comparing our approach against existing methods for retinal fluid segmentation with competitive performance as we improve upon recent work by up to 15% mean IoU

    Attention Gated Networks: Learning to Leverage Salient Regions in Medical Images

    Get PDF
    We propose a novel attention gate (AG) model for medical image analysis that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules when using convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN models such as VGG or U-Net architectures with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed AG models are evaluated on a variety of tasks, including medical image classification and segmentation. For classification, we demonstrate the use case of AGs in scan plane detection for fetal ultrasound screening. We show that the proposed attention mechanism can provide efficient object localisation while improving the overall prediction performance by reducing false positives. For segmentation, the proposed architecture is evaluated on two large 3D CT abdominal datasets with manual annotations for multiple organs. Experimental results show that AG models consistently improve the prediction performance of the base architectures across different datasets and training sizes while preserving computational efficiency. Moreover, AGs guide the model activations to be focused around salient regions, which provides better insights into how model predictions are made. The source code for the proposed AG models is publicly available.Comment: Accepted for Medical Image Analysis (Special Issue on Medical Imaging with Deep Learning). arXiv admin note: substantial text overlap with arXiv:1804.03999, arXiv:1804.0533

    Automatic Segmentation, Localization, and Identification of Vertebrae in 3D CT Images Using Cascaded Convolutional Neural Networks

    Full text link
    This paper presents a method for automatic segmentation, localization, and identification of vertebrae in arbitrary 3D CT images. Many previous works do not perform the three tasks simultaneously even though requiring a priori knowledge of which part of the anatomy is visible in the 3D CT images. Our method tackles all these tasks in a single multi-stage framework without any assumptions. In the first stage, we train a 3D Fully Convolutional Networks to find the bounding boxes of the cervical, thoracic, and lumbar vertebrae. In the second stage, we train an iterative 3D Fully Convolutional Networks to segment individual vertebrae in the bounding box. The input to the second networks have an auxiliary channel in addition to the 3D CT images. Given the segmented vertebra regions in the auxiliary channel, the networks output the next vertebra. The proposed method is evaluated in terms of segmentation, localization, and identification accuracy with two public datasets of 15 3D CT images from the MICCAI CSI 2014 workshop challenge and 302 3D CT images with various pathologies introduced in [1]. Our method achieved a mean Dice score of 96%, a mean localization error of 8.3 mm, and a mean identification rate of 84%. In summary, our method achieved better performance than all existing works in all the three metrics

    Context label learning: improving background class representations in semantic segmentation

    Get PDF
    Background samples provide key contextual information for segmenting regions of interest (ROIs). However, they always cover a diverse set of structures, causing difficulties for the segmentation model to learn good decision boundaries with high sensitivity and precision. The issue concerns the highly heterogeneous nature of the background class, resulting in multi-modal distributions. Empirically, we find that neural networks trained with heterogeneous background struggle to map the corresponding contextual samples to compact clusters in feature space. As a result, the distribution over background logit activations may shift across the decision boundary, leading to systematic over-segmentation across different datasets and tasks. In this study, we propose context label learning (CoLab) to improve the context representations by decomposing the background class into several subclasses. Specifically, we train an auxiliary network as a task generator, along with the primary segmentation model, to automatically generate context labels that positively affect the ROI segmentation accuracy. Extensive experiments are conducted on several challenging segmentation tasks and datasets. The results demonstrate that CoLab can guide the segmentation model to map the logits of background samples away from the decision boundary, resulting in significantly improved segmentation accuracy. Code is available at https://github.com/ZerojumpLine/CoLab
    corecore