7 research outputs found

    Motif-Centric Representation Learning for Symbolic Music

    Full text link
    Music motif, as a conceptual building block of composition, is crucial for music structure analysis and automatic composition. While human listeners can identify motifs easily, existing computational models fall short in representing motifs and their developments. The reason is that the nature of motifs is implicit, and the diversity of motif variations extends beyond simple repetitions and modulations. In this study, we aim to learn the implicit relationship between motifs and their variations via representation learning, using the Siamese network architecture and a pretraining and fine-tuning pipeline. A regularization-based method, VICReg, is adopted for pretraining, while contrastive learning is used for fine-tuning. Experimental results on a retrieval-based task show that these two methods complement each other, yielding an improvement of 12.6% in the area under the precision-recall curve. Lastly, we visualize the acquired motif representations, offering an intuitive comprehension of the overall structure of a music piece. As far as we know, this work marks a noteworthy step forward in computational modeling of music motifs. We believe that this work lays the foundations for future applications of motifs in automatic music composition and music information retrieval

    Music SketchNet: Controllable Music Generation via Factorized Representations of Pitch and Rhythm

    Full text link
    Drawing an analogy with automatic image completion systems, we propose Music SketchNet, a neural network framework that allows users to specify partial musical ideas guiding automatic music generation. We focus on generating the missing measures in incomplete monophonic musical pieces, conditioned on surrounding context, and optionally guided by user-specified pitch and rhythm snippets. First, we introduce SketchVAE, a novel variational autoencoder that explicitly factorizes rhythm and pitch contour to form the basis of our proposed model. Then we introduce two discriminative architectures, SketchInpainter and SketchConnector, that in conjunction perform the guided music completion, filling in representations for the missing measures conditioned on surrounding context and user-specified snippets. We evaluate SketchNet on a standard dataset of Irish folk music and compare with models from recent works. When used for music completion, our approach outperforms the state-of-the-art both in terms of objective metrics and subjective listening tests. Finally, we demonstrate that our model can successfully incorporate user-specified snippets during the generation process.Comment: 8 pages, 8 figures, Proceedings of the 21st International Society for Music Information Retrieval Conference, ISMIR 202

    Generating Chord Progression from Melody with Flexible Harmonic Rhythm and Controllable Harmonic Density

    Full text link
    Melody harmonization, which involves generating a chord progression that complements a user-provided melody, continues to pose a significant challenge. A chord progression must not only be in harmony with the melody, but also interdependent on its rhythmic pattern. While previous neural network-based systems have been successful in producing chord progressions for given melodies, they have not adequately addressed controllable melody harmonization, nor have they focused on generating harmonic rhythms with flexibility in the rates or patterns of chord changes. This paper presents AutoHarmonizer, a novel system for harmonic density-controllable melody harmonization with such a flexible harmonic rhythm. AutoHarmonizer is equipped with an extensive vocabulary of 1,462 chord types and can generate chord progressions that vary in harmonic density for a given melody. Experimental results indicate that the AutoHarmonizer-generated chord progressions exhibit a diverse range of harmonic rhythms and that the system's controllable harmonic density is effective.Comment: 12 pages, 6 figures, 1 table, accepted by EURASIP JASM
    corecore