2,987 research outputs found

    SVM-Based Channel Estimation and Data Detection for One-Bit Massive MIMO systems

    Get PDF
    The use of low-resolution Analog-to-Digital Converters (ADCs) is a practical solution for reducing cost and power consumption for massive Multiple-Input-Multiple-Output (MIMO) systems. However, the severe nonlinearity of low-resolution ADCs causes significant distortions in the received signals and makes the channel estimation and data detection tasks much more challenging. In this paper, we show how Support Vector Machine (SVM), a well-known supervised-learning technique in machine learning, can be exploited to provide efficient and robust channel estimation and data detection in massive MIMO systems with one-bit ADCs. First, the problem of channel estimation for uncorrelated channels is formulated as a conventional SVM problem. The objective function of this SVM problem is then modified for estimating spatially correlated channels. Next, a two-stage detection algorithm is proposed where SVM is further exploited in the first stage. The performance of the proposed data detection method is very close to that of Maximum-Likelihood (ML) data detection when the channel is perfectly known. We also propose an SVM-based joint Channel Estimation and Data Detection (CE-DD) method, which makes use of both the to-be-decoded data vectors and the pilot data vectors to improve the estimation and detection performance. Finally, an extension of the proposed methods to OFDM systems with frequency-selective fading channels is presented. Simulation results show that the proposed methods are efficient and robust, and also outperform existing ones

    Nonlinear Channel Estimation for OFDM System by Complex LS-SVM under High Mobility Conditions

    Full text link
    A nonlinear channel estimator using complex Least Square Support Vector Machines (LS-SVM) is proposed for pilot-aided OFDM system and applied to Long Term Evolution (LTE) downlink under high mobility conditions. The estimation algorithm makes use of the reference signals to estimate the total frequency response of the highly selective multipath channel in the presence of non-Gaussian impulse noise interfering with pilot signals. Thus, the algorithm maps trained data into a high dimensional feature space and uses the structural risk minimization (SRM) principle to carry out the regression estimation for the frequency response function of the highly selective channel. The simulations show the effectiveness of the proposed method which has good performance and high precision to track the variations of the fading channels compared to the conventional LS method and it is robust at high speed mobility.Comment: 11 page

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER
    • …
    corecore