4,215 research outputs found

    Investigation of Deep Learning-Based Filtered Density Function for Large Eddy Simulation of Turbulent Scalar Mixing

    Full text link
    The present investigation focuses on the application of deep neural network (DNN) models to predict the filtered density function (FDF) of mixture fraction in large eddy simulation (LES) of variable density mixing layers with conserved scalar mixing. A systematic training method is proposed to select the DNN-FDF model training sample size and architecture via learning curves, thereby reducing bias and variance. Two DNN-FDF models are developed: one trained on the FDFs generated from direct numerical simulation (DNS), and another trained with low-fidelity simulations in a zero-dimensional pairwise mixing stirred reactor (PMSR). The accuracy and consistency of both DNN-FDF models are established by comparing their predicted scalar filtered moments with those of conventional LES, in which the transport equations corresponding to these moments are directly solved. Further, DNN-FDF approach is shown to perform better than the widely used β\beta-FDF method, particularly for multi-modal FDF shapes and higher variances. Additionally, DNN-FDF results are also assessed via comparison with data obtained by DNS and the transported FDF method. The latter involves LES simulations coupled with the Monte Carlo (MC) methods which directly account for the mixture fraction FDF. The DNN-FDF results compare favorably with those of DNS and transported FDF method. Furthermore, DNN-FDF models exhibit good predictive capabilities compared to filtered DNS for filtering of highly non-linear functions, highlighting their potential for applications in turbulent reacting flow simulations. Overall, the DNN-FDF approach offers a more accurate alternative to the conventional presumed FDF method for describing turbulent scalar transport in a cost-effective manner

    RANS Turbulence Model Development using CFD-Driven Machine Learning

    Full text link
    This paper presents a novel CFD-driven machine learning framework to develop Reynolds-averaged Navier-Stokes (RANS) models. The CFD-driven training is an extension of the gene expression programming method (Weatheritt and Sandberg, 2016), but crucially the fitness of candidate models is now evaluated by running RANS calculations in an integrated way, rather than using an algebraic function. Unlike other data-driven methods that fit the Reynolds stresses of trained models to high-fidelity data, the cost function for the CFD-driven training can be defined based on any flow feature from the CFD results. This extends the applicability of the method especially when the training data is limited. Furthermore, the resulting model, which is the one providing the most accurate CFD results at the end of the training, inherently shows good performance in RANS calculations. To demonstrate the potential of this new method, the CFD-driven machine learning approach is applied to model development for wake mixing in turbomachines. A new model is trained based on a high-pressure turbine case and then tested for three additional cases, all representative of modern turbine nozzles. Despite the geometric configurations and operating conditions being different among the cases, the predicted wake mixing profiles are significantly improved in all of these a posteriori tests. Moreover, the model equation is explicitly given and available for analysis, thus it could be deduced that the enhanced wake prediction is predominantly due to the extra diffusion introduced by the CFD-driven model.Comment: Accepted by Journal of Computational Physic
    • …
    corecore