16 research outputs found

    Combining Multiple Views for Visual Speech Recognition

    Get PDF
    Visual speech recognition is a challenging research problem with a particular practical application of aiding audio speech recognition in noisy scenarios. Multiple camera setups can be beneficial for the visual speech recognition systems in terms of improved performance and robustness. In this paper, we explore this aspect and provide a comprehensive study on combining multiple views for visual speech recognition. The thorough analysis covers fusion of all possible view angle combinations both at feature level and decision level. The employed visual speech recognition system in this study extracts features through a PCA-based convolutional neural network, followed by an LSTM network. Finally, these features are processed in a tandem system, being fed into a GMM-HMM scheme. The decision fusion acts after this point by combining the Viterbi path log-likelihoods. The results show that the complementary information contained in recordings from different view angles improves the results significantly. For example, the sentence correctness on the test set is increased from 76% for the highest performing single view (30∘30^\circ) to up to 83% when combining this view with the frontal and 60∘60^\circ view angles

    Lip Reading Sentences in the Wild

    Full text link
    The goal of this work is to recognise phrases and sentences being spoken by a talking face, with or without the audio. Unlike previous works that have focussed on recognising a limited number of words or phrases, we tackle lip reading as an open-world problem - unconstrained natural language sentences, and in the wild videos. Our key contributions are: (1) a 'Watch, Listen, Attend and Spell' (WLAS) network that learns to transcribe videos of mouth motion to characters; (2) a curriculum learning strategy to accelerate training and to reduce overfitting; (3) a 'Lip Reading Sentences' (LRS) dataset for visual speech recognition, consisting of over 100,000 natural sentences from British television. The WLAS model trained on the LRS dataset surpasses the performance of all previous work on standard lip reading benchmark datasets, often by a significant margin. This lip reading performance beats a professional lip reader on videos from BBC television, and we also demonstrate that visual information helps to improve speech recognition performance even when the audio is available

    Multi-Modal Deep Hand Sign Language Recognition in Still Images Using Restricted Boltzmann Machine

    Get PDF
    In this paper, a deep learning approach, Restricted Boltzmann Machine (RBM), is used to perform automatic hand sign language recognition from visual data. We evaluate how RBM, as a deep generative model, is capable of generating the distribution of the input data for an enhanced recognition of unseen data. Two modalities, RGB and Depth, are considered in the model input in three forms: original image, cropped image, and noisy cropped image. Five crops of the input image are used and the hand of these cropped images are detected using Convolutional Neural Network (CNN). After that, three types of the detected hand images are generated for each modality and input to RBMs. The outputs of the RBMs for two modalities are fused in another RBM in order to recognize the output sign label of the input image. The proposed multi-modal model is trained on all and part of the American alphabet and digits of four publicly available datasets. We also evaluate the robustness of the proposal against noise. Experimental results show that the proposed multi-modal model, using crops and the RBM fusing methodology, achieves state-of-the-art results on Massey University Gesture Dataset 2012, American Sign Language (ASL). and Fingerspelling Dataset from the University of Surrey's Center for Vision, Speech and Signal Processing, NYU, and ASL Fingerspelling A datasets

    Adversarial Training for Multi-Channel Sign Language Production

    Full text link
    Sign Languages are rich multi-channel languages, requiring articulation of both manual (hands) and non-manual (face and body) features in a precise, intricate manner. Sign Language Production (SLP), the automatic translation from spoken to sign languages, must embody this full sign morphology to be truly understandable by the Deaf community. Previous work has mainly focused on manual feature production, with an under-articulated output caused by regression to the mean. In this paper, we propose an Adversarial Multi-Channel approach to SLP. We frame sign production as a minimax game between a transformer-based Generator and a conditional Discriminator. Our adversarial discriminator evaluates the realism of sign production conditioned on the source text, pushing the generator towards a realistic and articulate output. Additionally, we fully encapsulate sign articulators with the inclusion of non-manual features, producing facial features and mouthing patterns. We evaluate on the challenging RWTH-PHOENIX-Weather-2014T (PHOENIX14T) dataset, and report state-of-the art SLP back-translation performance for manual production. We set new benchmarks for the production of multi-channel sign to underpin future research into realistic SLP

    Deep Audio-Visual Speech Recognition

    Full text link
    The goal of this work is to recognise phrases and sentences being spoken by a talking face, with or without the audio. Unlike previous works that have focussed on recognising a limited number of words or phrases, we tackle lip reading as an open-world problem - unconstrained natural language sentences, and in the wild videos. Our key contributions are: (1) we compare two models for lip reading, one using a CTC loss, and the other using a sequence-to-sequence loss. Both models are built on top of the transformer self-attention architecture; (2) we investigate to what extent lip reading is complementary to audio speech recognition, especially when the audio signal is noisy; (3) we introduce and publicly release a new dataset for audio-visual speech recognition, LRS2-BBC, consisting of thousands of natural sentences from British television. The models that we train surpass the performance of all previous work on a lip reading benchmark dataset by a significant margin.Comment: Accepted for publication by IEEE Transactions on Pattern Analysis and Machine Intelligenc

    BSL-1K: Scaling up co-articulated sign language recognition using mouthing cues

    Get PDF
    Recent progress in fine-grained gesture and action classification, and machine translation, point to the possibility of automated sign language recognition becoming a reality. A key stumbling block in making progress towards this goal is a lack of appropriate training data, stemming from the high complexity of sign annotation and a limited supply of qualified annotators. In this work, we introduce a new scalable approach to data collection for sign recognition in continuous videos. We make use of weakly-aligned subtitles for broadcast footage together with a keyword spotting method to automatically localise sign-instances for a vocabulary of 1,000 signs in 1,000 hours of video. We make the following contributions: (1) We show how to use mouthing cues from signers to obtain high-quality annotations from video data - the result is the BSL-1K dataset, a collection of British Sign Language (BSL) signs of unprecedented scale; (2) We show that we can use BSL-1K to train strong sign recognition models for co-articulated signs in BSL and that these models additionally form excellent pretraining for other sign languages and benchmarks - we exceed the state of the art on both the MSASL and WLASL benchmarks. Finally, (3) we propose new large-scale evaluation sets for the tasks of sign recognition and sign spotting and provide baselines which we hope will serve to stimulate research in this area.Comment: Appears in: European Conference on Computer Vision 2020 (ECCV 2020). 28 page
    corecore