16,292 research outputs found

    Maximizing Model Generalization for Machine Condition Monitoring with Self-Supervised Learning and Federated Learning

    Full text link
    Deep Learning (DL) can diagnose faults and assess machine health from raw condition monitoring data without manually designed statistical features. However, practical manufacturing applications remain extremely difficult for existing DL methods. Machine data is often unlabeled and from very few health conditions (e.g., only normal operating data). Furthermore, models often encounter shifts in domain as process parameters change and new categories of faults emerge. Traditional supervised learning may struggle to learn compact, discriminative representations that generalize to these unseen target domains since it depends on having plentiful classes to partition the feature space with decision boundaries. Transfer Learning (TL) with domain adaptation attempts to adapt these models to unlabeled target domains but assumes similar underlying structure that may not be present if new faults emerge. This study proposes focusing on maximizing the feature generality on the source domain and applying TL via weight transfer to copy the model to the target domain. Specifically, Self-Supervised Learning (SSL) with Barlow Twins may produce more discriminative features for monitoring health condition than supervised learning by focusing on semantic properties of the data. Furthermore, Federated Learning (FL) for distributed training may also improve generalization by efficiently expanding the effective size and diversity of training data by sharing information across multiple client machines. Results show that Barlow Twins outperforms supervised learning in an unlabeled target domain with emerging motor faults when the source training data contains very few distinct categories. Incorporating FL may also provide a slight advantage by diffusing knowledge of health conditions between machines

    Enhanced Industrial Machinery Condition Monitoring Methodology based on Novelty Detection and Multi-Modal Analysis

    Get PDF
    This paper presents a condition-based monitoring methodology based on novelty detection applied to industrial machinery. The proposed approach includes both, the classical classification of multiple a priori known scenarios, and the innovative detection capability of new operating modes not previously available. The development of condition-based monitoring methodologies considering the isolation capabilities of unexpected scenarios represents, nowadays, a trending topic able to answer the demanding requirements of the future industrial processes monitoring systems. First, the method is based on the temporal segmentation of the available physical magnitudes, and the estimation of a set of time-based statistical features. Then, a double feature reduction stage based on Principal Component Analysis and Linear Discriminant Analysis is applied in order to optimize the classification and novelty detection performances. The posterior combination of a Feed-forward Neural Network and One-Class Support Vector Machine allows the proper interpretation of known and unknown operating conditions. The effectiveness of this novel condition monitoring scheme has been verified by experimental results obtained from an automotive industry machine.Postprint (published version

    Scalable and reliable deep transfer learning for intelligent fault detection via multi-scale neural processes embedded with knowledge

    Full text link
    Deep transfer learning (DTL) is a fundamental method in the field of Intelligent Fault Detection (IFD). It aims to mitigate the degradation of method performance that arises from the discrepancies in data distribution between training set (source domain) and testing set (target domain). Considering the fact that fault data collection is challenging and certain faults are scarce, DTL-based methods face the limitation of available observable data, which reduces the detection performance of the methods in the target domain. Furthermore, DTL-based methods lack comprehensive uncertainty analysis that is essential for building reliable IFD systems. To address the aforementioned problems, this paper proposes a novel DTL-based method known as Neural Processes-based deep transfer learning with graph convolution network (GTNP). Feature-based transfer strategy of GTNP bridges the data distribution discrepancies of source domain and target domain in high-dimensional space. Both the joint modeling based on global and local latent variables and sparse sampling strategy reduce the demand of observable data in the target domain. The multi-scale uncertainty analysis is obtained by using the distribution characteristics of global and local latent variables. Global analysis of uncertainty enables GTNP to provide quantitative values that reflect the complexity of methods and the difficulty of tasks. Local analysis of uncertainty allows GTNP to model uncertainty (confidence of the fault detection result) at each sample affected by noise and bias. The validation of the proposed method is conducted across 3 IFD tasks, consistently showing the superior detection performance of GTNP compared to the other DTL-based methods
    • …
    corecore