3 research outputs found

    Wearable Sensor Feature Fusion for Human Activity Recognition (HAR) : A Proposed Classification Framework

    Get PDF
    Human Activity Recognition (HAR) focuses on detecting people's daily regular activities based on time-series recordings of their actions or motions. Due to the extensive feature engineering and human feature extraction required by traditional machine learning algorithms, they are time consuming to develop. To identify complicated human behaviors, deep learning approaches are more suited since they can automatically learn the features from the data. In this paper, a feature-fusion concept on handcrafted features and deep learning features is proposed to increase the recognition accuracy of diverse human physical activities using wearable sensors. The deep learning model Long-Short Term Memory based Deep Recurrent Neural Network (LSTM-DRNN) will be used to extract deep features. By fusing the handcrafted produced features with the automatically extracted deep features through the use of deep learning, the performance of the HAR model can be improved, which will result in a greater level of accuracy in the HAR model. Experiments conducted on two publicly available datasets show that the proposed feature fusion achieves a high level of classification accuracy

    Deep Learning Networks for Human Activity Recognition with CSI Correlation Feature Extraction

    Full text link
    © 2019 IEEE. Device free WiFi Sensing using channel state information (CSI) has been shown great potentials for human activity recognition (HAR). However, extracting reliable and concise feature signals remains as a challenging problem, especially in a dynamic and complex environment. In this paper, we propose a novel scheme for CSI-based HAR using deep learning network (CH-DLN), with an innovative CSI correlation feature extraction (CCFE) method. The CCFE method pre-processes the signals input to the DLN in two steps. Firstly, it uses a recursive algorithm to reduce non-activity-related information from the signal and hence enhance the activity-dependent signals. Secondly, it computes the correlation over both the time and frequency domain to disclose better signal structure and compress the signal. From such enhanced and compressed signals, we utilize the recurrent neural networking (RNN) to automatically extract deeper features, and then apply the softmax regression algorithm for classifying activities. Through extensive experimental results, our proposed scheme is shown to outperform state-of-the-art methods in recognition accuracy, with much less training time
    corecore