6,233 research outputs found

    TossingBot: Learning to Throw Arbitrary Objects with Residual Physics

    Full text link
    We investigate whether a robot arm can learn to pick and throw arbitrary objects into selected boxes quickly and accurately. Throwing has the potential to increase the physical reachability and picking speed of a robot arm. However, precisely throwing arbitrary objects in unstructured settings presents many challenges: from acquiring reliable pre-throw conditions (e.g. initial pose of object in manipulator) to handling varying object-centric properties (e.g. mass distribution, friction, shape) and dynamics (e.g. aerodynamics). In this work, we propose an end-to-end formulation that jointly learns to infer control parameters for grasping and throwing motion primitives from visual observations (images of arbitrary objects in a bin) through trial and error. Within this formulation, we investigate the synergies between grasping and throwing (i.e., learning grasps that enable more accurate throws) and between simulation and deep learning (i.e., using deep networks to predict residuals on top of control parameters predicted by a physics simulator). The resulting system, TossingBot, is able to grasp and throw arbitrary objects into boxes located outside its maximum reach range at 500+ mean picks per hour (600+ grasps per hour with 85% throwing accuracy); and generalizes to new objects and target locations. Videos are available at https://tossingbot.cs.princeton.eduComment: Summary Video: https://youtu.be/f5Zn2Up2RjQ Project webpage: https://tossingbot.cs.princeton.ed

    Learning to Singulate Objects using a Push Proposal Network

    Full text link
    Learning to act in unstructured environments, such as cluttered piles of objects, poses a substantial challenge for manipulation robots. We present a novel neural network-based approach that separates unknown objects in clutter by selecting favourable push actions. Our network is trained from data collected through autonomous interaction of a PR2 robot with randomly organized tabletop scenes. The model is designed to propose meaningful push actions based on over-segmented RGB-D images. We evaluate our approach by singulating up to 8 unknown objects in clutter. We demonstrate that our method enables the robot to perform the task with a high success rate and a low number of required push actions. Our results based on real-world experiments show that our network is able to generalize to novel objects of various sizes and shapes, as well as to arbitrary object configurations. Videos of our experiments can be viewed at http://robotpush.cs.uni-freiburg.deComment: International Symposium on Robotics Research (ISRR) 2017, videos: http://robotpush.cs.uni-freiburg.d

    Developmental Bayesian Optimization of Black-Box with Visual Similarity-Based Transfer Learning

    Full text link
    We present a developmental framework based on a long-term memory and reasoning mechanisms (Vision Similarity and Bayesian Optimisation). This architecture allows a robot to optimize autonomously hyper-parameters that need to be tuned from any action and/or vision module, treated as a black-box. The learning can take advantage of past experiences (stored in the episodic and procedural memories) in order to warm-start the exploration using a set of hyper-parameters previously optimized from objects similar to the new unknown one (stored in a semantic memory). As example, the system has been used to optimized 9 continuous hyper-parameters of a professional software (Kamido) both in simulation and with a real robot (industrial robotic arm Fanuc) with a total of 13 different objects. The robot is able to find a good object-specific optimization in 68 (simulation) or 40 (real) trials. In simulation, we demonstrate the benefit of the transfer learning based on visual similarity, as opposed to an amnesic learning (i.e. learning from scratch all the time). Moreover, with the real robot, we show that the method consistently outperforms the manual optimization from an expert with less than 2 hours of training time to achieve more than 88% of success

    Robot-aided cloth classification using depth information and CNNs

    Get PDF
    The final publication is available at link.springer.comWe present a system to deal with the problem of classifying garments from a pile of clothes. This system uses a robot arm to extract a garment and show it to a depth camera. Using only depth images of a partial view of the garment as input, a deep convolutional neural network has been trained to classify different types of garments. The robot can rotate the garment along the vertical axis in order to provide different views of the garment to enlarge the prediction confidence and avoid confusions. In addition to obtaining very high classification scores, compared to previous approaches to cloth classification that match the sensed data against a database, our system provides a fast and occlusion-robust solution to the problem.Peer ReviewedPostprint (author's final draft

    More Than a Feeling: Learning to Grasp and Regrasp using Vision and Touch

    Full text link
    For humans, the process of grasping an object relies heavily on rich tactile feedback. Most recent robotic grasping work, however, has been based only on visual input, and thus cannot easily benefit from feedback after initiating contact. In this paper, we investigate how a robot can learn to use tactile information to iteratively and efficiently adjust its grasp. To this end, we propose an end-to-end action-conditional model that learns regrasping policies from raw visuo-tactile data. This model -- a deep, multimodal convolutional network -- predicts the outcome of a candidate grasp adjustment, and then executes a grasp by iteratively selecting the most promising actions. Our approach requires neither calibration of the tactile sensors, nor any analytical modeling of contact forces, thus reducing the engineering effort required to obtain efficient grasping policies. We train our model with data from about 6,450 grasping trials on a two-finger gripper equipped with GelSight high-resolution tactile sensors on each finger. Across extensive experiments, our approach outperforms a variety of baselines at (i) estimating grasp adjustment outcomes, (ii) selecting efficient grasp adjustments for quick grasping, and (iii) reducing the amount of force applied at the fingers, while maintaining competitive performance. Finally, we study the choices made by our model and show that it has successfully acquired useful and interpretable grasping behaviors.Comment: 8 pages. Published on IEEE Robotics and Automation Letters (RAL). Website: https://sites.google.com/view/more-than-a-feelin
    • …
    corecore