9 research outputs found

    DCR-Net: A Deep Co-Interactive Relation Network for Joint Dialog Act Recognition and Sentiment Classification

    Full text link
    In dialog system, dialog act recognition and sentiment classification are two correlative tasks to capture speakers intentions, where dialog act and sentiment can indicate the explicit and the implicit intentions separately. Most of the existing systems either treat them as separate tasks or just jointly model the two tasks by sharing parameters in an implicit way without explicitly modeling mutual interaction and relation. To address this problem, we propose a Deep Co-Interactive Relation Network (DCR-Net) to explicitly consider the cross-impact and model the interaction between the two tasks by introducing a co-interactive relation layer. In addition, the proposed relation layer can be stacked to gradually capture mutual knowledge with multiple steps of interaction. Especially, we thoroughly study different relation layers and their effects. Experimental results on two public datasets (Mastodon and Dailydialog) show that our model outperforms the state-of-the-art joint model by 4.3% and 3.4% in terms of F1 score on dialog act recognition task, 5.7% and 12.4% on sentiment classification respectively. Comprehensive analysis empirically verifies the effectiveness of explicitly modeling the relation between the two tasks and the multi-steps interaction mechanism. Finally, we employ the Bidirectional Encoder Representation from Transformer (BERT) in our framework, which can further boost our performance in both tasks.Comment: Accepted by AAAI2020 (Oral

    Co-GAT: A Co-Interactive Graph Attention Network for Joint Dialog Act Recognition and Sentiment Classification

    Full text link
    In a dialog system, dialog act recognition and sentiment classification are two correlative tasks to capture speakers intentions, where dialog act and sentiment can indicate the explicit and the implicit intentions separately. The dialog context information (contextual information) and the mutual interaction information are two key factors that contribute to the two related tasks. Unfortunately, none of the existing approaches consider the two important sources of information simultaneously. In this paper, we propose a Co-Interactive Graph Attention Network (Co-GAT) to jointly perform the two tasks. The core module is a proposed co-interactive graph interaction layer where a cross-utterances connection and a cross-tasks connection are constructed and iteratively updated with each other, achieving to consider the two types of information simultaneously. Experimental results on two public datasets show that our model successfully captures the two sources of information and achieve the state-of-the-art performance. In addition, we find that the contributions from the contextual and mutual interaction information do not fully overlap with contextualized word representations (BERT, Roberta, XLNet).Comment: Accepted by AAAI2021 (Long Paper). arXiv admin note: text overlap with arXiv:2008.0691

    A Unifying Framework of Bilinear LSTMs

    Full text link
    This paper presents a novel unifying framework of bilinear LSTMs that can represent and utilize the nonlinear interaction of the input features present in sequence datasets for achieving superior performance over a linear LSTM and yet not incur more parameters to be learned. To realize this, our unifying framework allows the expressivity of the linear vs. bilinear terms to be balanced by correspondingly trading off between the hidden state vector size vs. approximation quality of the weight matrix in the bilinear term so as to optimize the performance of our bilinear LSTM, while not incurring more parameters to be learned. We empirically evaluate the performance of our bilinear LSTM in several language-based sequence learning tasks to demonstrate its general applicability
    corecore