53,435 research outputs found

    HandyPose and VehiPose: Pose Estimation of Flexible and Rigid Objects

    Get PDF
    Pose estimation is an important and challenging task in computer vision. Hand pose estimation has drawn increasing attention during the past decade and has been utilized in a wide range of applications including augmented reality, virtual reality, human-computer interaction, and action recognition. Hand pose is more challenging than general human body pose estimation due to the large number of degrees of freedom and the frequent occlusions of joints. To address these challenges, we propose HandyPose, a single-pass, end-to-end trainable architecture for hand pose estimation. Adopting an encoder-decoder framework with multi-level features, our method achieves high accuracy in hand pose while maintaining manageable size complexity and modularity of the network. HandyPose takes a multi-scale approach to representing context by incorporating spatial information at various levels of the network to mitigate the loss of resolution due to pooling. Our advanced multi-level waterfall architecture leverages the efficiency of progressive cascade filtering while maintaining larger fields-of-view through the concatenation of multi-level features from different levels of the network in the waterfall module. The decoder incorporates both the waterfall and multi-scale features for the generation of accurate joint heatmaps in a single stage. Recent developments in computer vision and deep learning have achieved significant progress in human pose estimation, but little of this work has been applied to vehicle pose. We also propose VehiPose, an efficient architecture for vehicle pose estimation, based on a multi-scale deep learning approach that achieves high accuracy vehicle pose estimation while maintaining manageable network complexity and modularity. The VehiPose architecture combines an encoder-decoder architecture with a waterfall atrous convolution module for multi-scale feature representation. It incorporates contextual information across scales and performs the localization of vehicle keypoints in an end-to-end trainable network. Our HandyPose architecture has a baseline of vehipose with an improvement in performance by incorporating multi-level features from different levels of the backbone and introducing novel multi-level modules. HandyPose and VehiPose more thoroughly leverage the image contextual information and deal with the issue of spatial loss of resolution due to successive pooling while maintaining the size complexity, modularity of the network, and preserve the spatial information at various levels of the network. Our results demonstrate state-of-the-art performance on popular datasets and show that HandyPose and VehiPose are robust and efficient architectures for hand and vehicle pose estimation

    3D Human Pose and Shape Estimation Based on Parametric Model and Deep Learning

    Get PDF
    3D human body reconstruction from monocular images has wide applications in our life, such as movie, animation, Virtual/Augmented Reality, medical research and so on. Due to the high freedom of human body in real scene and the ambiguity of inferring 3D objects from 2D images, it is a challenging task to accurately recover 3D human body models from images. In this thesis, we explore the methods for estimating 3D human body models from images based on parametric model and deep learning.In the first part, the coarse 3D human body models are estimated automatically from multi-view images based on a parametric human body model called SMPL model. Two routes are exploited for estimating the pose and shape parameters of the SMPL model to obtain the 3D models: (1) Optimization based methods; and (2) Deep learning based methods. For the optimization based methods, we propose the novel energy functions based on some prior information including the 2D joint points and silhouettes. Through minimizing the energy functions, the SMPL model is fitted to the prior information, and then, the coarse 3D human body is obtained. In addition to the traditional optimization based methods, a deep learning based method is also proposed in the following work to regress the pose and shape parameters of the SMPL model. A novel architecture is proposed to put the optimization into a training loop of convolutional neural network (CNN) to form a self-supervision structure based on the multi-view images. The proposed methods are evaluated on both synthetic and real datasets to demonstrate that they can obtain better estimation of the pose and shape of 3D human body than previous approaches.In the second part, the problem is shifted to the detailed 3D human body reconstruction from multi-view images. Instead of using the SMPL model, implicit function is utilized to represent 3D models because implicit representation can generate continuous surface and has better flexibility for arbitrary topology. Firstly, a multi-scale features based method is proposed to learn the implicit representation for 3D models through multi-stage hourglass networks from multi-view images. Furthermore, a coarse-to-fine method is proposed to refine the 3D models from multi-view images through learning the voxel super-resolution. In this method, the coarse 3D models are estimated firstly by the learned implicit function based on multi-scale features from multi-view images. Afterwards, by voxelizing the coarse 3D models to low resolution voxel grids, voxel super-resolution is learned through a multi-stage 3D CNN for feature extraction from low resolution voxel grids and fully connected neural network for predicting the implicit function. Voxel super-resolution is able to remove the false reconstruction and preserve the surface details. The proposed methods are evaluated on both real and synthetic datasets in which our method can estimate 3D model with higher accuracy and better surface quality than some previous methods

    Deep Autoencoder for Combined Human Pose Estimation and body Model Upscaling

    Get PDF
    We present a method for simultaneously estimating 3D human pose and body shape from a sparse set of wide-baseline camera views. We train a symmetric convolutional autoencoder with a dual loss that enforces learning of a latent representation that encodes skeletal joint positions, and at the same time learns a deep representation of volumetric body shape. We harness the latter to up-scale input volumetric data by a factor of 4×4 \times, whilst recovering a 3D estimate of joint positions with equal or greater accuracy than the state of the art. Inference runs in real-time (25 fps) and has the potential for passive human behaviour monitoring where there is a requirement for high fidelity estimation of human body shape and pose

    Integral Human Pose Regression

    Full text link
    State-of-the-art human pose estimation methods are based on heat map representation. In spite of the good performance, the representation has a few issues in nature, such as not differentiable and quantization error. This work shows that a simple integral operation relates and unifies the heat map representation and joint regression, thus avoiding the above issues. It is differentiable, efficient, and compatible with any heat map based methods. Its effectiveness is convincingly validated via comprehensive ablation experiments under various settings, specifically on 3D pose estimation, for the first time

    MoDeep: A Deep Learning Framework Using Motion Features for Human Pose Estimation

    Full text link
    In this work, we propose a novel and efficient method for articulated human pose estimation in videos using a convolutional network architecture, which incorporates both color and motion features. We propose a new human body pose dataset, FLIC-motion, that extends the FLIC dataset with additional motion features. We apply our architecture to this dataset and report significantly better performance than current state-of-the-art pose detection systems
    • …
    corecore