9,801 research outputs found

    Deep Gaussian Processes with Convolutional Kernels

    Full text link
    Deep Gaussian processes (DGPs) provide a Bayesian non-parametric alternative to standard parametric deep learning models. A DGP is formed by stacking multiple GPs resulting in a well-regularized composition of functions. The Bayesian framework that equips the model with attractive properties, such as implicit capacity control and predictive uncertainty, makes it at the same time challenging to combine with a convolutional structure. This has hindered the application of DGPs in computer vision tasks, an area where deep parametric models (i.e. CNNs) have made breakthroughs. Standard kernels used in DGPs such as radial basis functions (RBFs) are insufficient for handling pixel variability in raw images. In this paper, we build on the recent convolutional GP to develop Convolutional DGP (CDGP) models which effectively capture image level features through the use of convolution kernels, therefore opening up the way for applying DGPs to computer vision tasks. Our model learns local spatial influence and outperforms strong GP based baselines on multi-class image classification. We also consider various constructions of convolution kernel over the image patches, analyze the computational trade-offs and provide an efficient framework for convolutional DGP models. The experimental results on image data such as MNIST, rectangles-image, CIFAR10 and Caltech101 demonstrate the effectiveness of the proposed approaches

    On the Inductive Bias of Neural Tangent Kernels

    Get PDF
    State-of-the-art neural networks are heavily over-parameterized, making the optimization algorithm a crucial ingredient for learning predictive models with good generalization properties. A recent line of work has shown that in a certain over-parameterized regime, the learning dynamics of gradient descent are governed by a certain kernel obtained at initialization, called the neural tangent kernel. We study the inductive bias of learning in such a regime by analyzing this kernel and the corresponding function space (RKHS). In particular, we study smoothness, approximation, and stability properties of functions with finite norm, including stability to image deformations in the case of convolutional networks, and compare to other known kernels for similar architectures.Comment: NeurIPS 201
    corecore