4,624 research outputs found

    Comparative Study of Different Methods in Vibration-Based Terrain Classification for Wheeled Robots with Shock Absorbers

    Get PDF
    open access articleAutonomous robots that operate in the field can enhance their security and efficiency by accurate terrain classification, which can be realized by means of robot-terrain interaction-generated vibration signals. In this paper, we explore the vibration-based terrain classification (VTC), in particular for a wheeled robot with shock absorbers. Because the vibration sensors are usually mounted on the main body of the robot, the vibration signals are dampened significantly, which results in the vibration signals collected on different terrains being more difficult to discriminate. Hence, the existing VTC methods applied to a robot with shock absorbers may degrade. The contributions are two-fold: (1) Several experiments are conducted to exhibit the performance of the existing feature-engineering and feature-learning classification methods; and (2) According to the long short-term memory (LSTM) network, we propose a one-dimensional convolutional LSTM (1DCL)-based VTC method to learn both spatial and temporal characteristics of the dampened vibration signals. The experiment results demonstrate that: (1) The feature-engineering methods, which are efficient in VTC of the robot without shock absorbers, are not so accurate in our project; meanwhile, the feature-learning methods are better choices; and (2) The 1DCL-based VTC method outperforms the conventional methods with an accuracy of 80.18%, which exceeds the second method (LSTM) by 8.23%

    Sound Source Localization in a Multipath Environment Using Convolutional Neural Networks

    Full text link
    The propagation of sound in a shallow water environment is characterized by boundary reflections from the sea surface and sea floor. These reflections result in multiple (indirect) sound propagation paths, which can degrade the performance of passive sound source localization methods. This paper proposes the use of convolutional neural networks (CNNs) for the localization of sources of broadband acoustic radiated noise (such as motor vessels) in shallow water multipath environments. It is shown that CNNs operating on cepstrogram and generalized cross-correlogram inputs are able to more reliably estimate the instantaneous range and bearing of transiting motor vessels when the source localization performance of conventional passive ranging methods is degraded. The ensuing improvement in source localization performance is demonstrated using real data collected during an at-sea experiment.Comment: 5 pages, 5 figures, Final draft of paper submitted to 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 15-20 April 2018 in Calgary, Alberta, Canada. arXiv admin note: text overlap with arXiv:1612.0350

    A New Terrain Classification Framework Using Proprioceptive Sensors for Mobile Robots

    Get PDF
    Mobile robots that operate in real-world environments interact with the surroundings to generate complex acoustics and vibration signals, which carry rich information about the terrain. This paper presents a new terrain classification framework that utilizes both acoustics and vibration signals resulting from the robot-terrain interaction. As an alternative to handcrafted domain-specific feature extraction, a two-stage feature selection method combining ReliefF and mRMR algorithms was developed to select optimal feature subsets that carry more discriminative information. As different data sources can provide complementary information, a multiclassifier combination method was proposed by considering a priori knowledge and fusing predictions from five data sources: one acoustic data source and four vibration data sources. In this study, four conceptually different classifiers were employed to perform the classification, each with a different number of optimal features. Signals were collected using a tracked robot moving at three different speeds on six different terrains. The new framework successfully improved classification performance of different classifiers using the newly developed optimal feature subsets. The greater improvement was observed for robot traversing at lower speeds

    PanDA: Panoptic Data Augmentation

    Get PDF
    The recently proposed panoptic segmentation task presents a significant challenge of image understanding with computer vision by unifying semantic segmentation and instance segmentation tasks. In this paper we present an efficient and novel panoptic data augmentation (PanDA) method which operates exclusively in pixel space, requires no additional data or training, and is computationally cheap to implement. By retraining original state-of-the-art models on PanDA augmented datasets generated with a single frozen set of parameters, we show robust performance gains in panoptic segmentation, instance segmentation, as well as detection across models, backbones, dataset domains, and scales. Finally, the effectiveness of unrealistic-looking training images synthesized by PanDA suggest that one should rethink the need for image realism for efficient data augmentation
    • …
    corecore