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Mobile robots that operate in real-world environments interact with the surroundings to generate complex acoustics and vibration
signals, which carry rich information about the terrain.This paper presents a new terrain classification framework that utilizes both
acoustics and vibration signals resulting from the robot-terrain interaction. As an alternative to handcrafted domain-specific feature
extraction, a two-stage feature selection method combining ReliefF andmRMR algorithms was developed to select optimal feature
subsets that carry more discriminative information. As different data sources can provide complementary information, a multi-
classifier combination method was proposed by considering a priori knowledge and fusing predictions from five data sources: one
acoustic data source and four vibration data sources. In this study, four conceptually different classifiers were employed to perform
the classification, each with a different number of optimal features. Signals were collected using a tracked robot moving at three
different speeds on six different terrains.Thenew framework successfully improved classification performance of different classifiers
using the newly developed optimal feature subsets. The greater improvement was observed for robot traversing at lower speeds.

1. Introduction

Mobile robots are increasingly deployed in real-world envi-
ronments, such as forestry, mining, rescue, site inspection,
and space exploration [1]. Due to the huge variety of dif-
ferent scenarios that can be encountered in each operating
environment, mobile robots must be prepared to deal with
complex, unknown, and even dangerous terrains. While they
can traverse hard flat ground safely at high speed, they may
experience slippage, sinking, and embedding events in the
face of loose slippery terrains [2, 3]. Other surfaces can
be bumpy and rocky, which may result in damage to the
robot [4]. Consequently, the terrain itself can become a
hazard, referred to as a nongeometric hazard [5]. To achieve
efficient and safe navigation, a mobile robot should adapt its
driving style, control strategy, or path planning strategy to
accommodate characteristics of the terrain.

A lot of efforts have beenmade to explore the applications
of terrain perception for mobile robots. At present, the
most commonly used sensing modalities are cameras and
LADARs. Vision-based methods present a powerful tool to
perceive the surrounding environment, by which texture or

color information is utilized to define the terrain. However,
it is unreliable as changes in appearance may be caused by
factors such as illumination, weather, and camouflaging by
leaves [6]. The LADAR-based method emphasizes segment-
ing terrain from obstacles, not the terrain itself, and it can be
affected by factors such as rain, snow, and smog [7]. There
are considerable limitations in traditional terrain perception
methods and the problem of how to reliably sense terrain
properties is a challenging task.

It is well known that human beings can capture informa-
tion about terrain during walking by sensing it with their feet
and by the sound of their footsteps, of particular importance
in dark environments [8]. Likewise, acoustic and vibration
responses resulting from robot-terrain interactions can be
exploited for terrain characterization. In previous studies,
vibration-based methods have performed well in classifying
ground surfaces with different degrees of coarseness [9, 10].
However, acoustic-based methods are believed to be more
suitable in distinguishing material types of different terrains
[11]. Moreover, the acoustic-based method is highly sensitive
to running water and can be used to alert a robot before
driving into a stream. Tactile force/torque (F/T) sensors have
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been adopted for legged robots to account for the specific leg-
terrain interaction [12].

Iagnemma et al. first proposed the vibration-based
method for terrain classification [13]. The basic idea is to use
vibrations induced in the wheels, the axes, or the body of
the robot to classify the underlying terrain being traversed.
The method was performed with a planetary rover, in which
the PSD function was used to form the feature vector and
PCA was used for dimensionality reduction [14]. Weiss et al.
used vibration response collected by a cart with hard wheels
to classify the interactions [15]. Four data representations
including log-scaled PSD, FFT, and other statistical measures
were used to perform seven-class experiments with SVM.
An average accuracy of 91.7% was achieved with a combined
feature vector; however, for gravel, poor accuracy of only
66.83% was obtained. Further to this, Weiss et al. tested the
same method using a RWI ATRV-Jr robot and demonstrated
that the SVM-based method outperformed other methods,
including Brooks and Iagnemma’smethod, PNN, kNN,Näıve
Bayes, and J4.8 decision tree [2]. In addition, a combination
of vision-based and vibration-basedmethods was reported to
significantly improve the classification rates when compared
to single sensor-based prediction performance [16]. Finally,
Brooks and Iagnemma introduced a self-supervised method
suitable for environments with unexpected appearance [5].

Although comparatively little research has been reported
on acoustic-based methods, it is a growing area of interest.
Ojeda et al. used amicrophone to classify robot-terrain inter-
actions; however, the study reported that sound performed
poorly as the sole modality for terrain classification, except
grass [17]. Libby and Stentz employed an acoustic-based
method to classify interactions with three terrain classes and
three hazardous objects using a combined feature vector
formed by several traditional features including spectral coef-
ficients, moments, and temporal and spectral characteristics
[11]. By applying a smoothing technique, an accuracy of
92% was obtained. More recently, Valada et al. performed
a novel deep learning-based terrain classification method
[18]. Using a convolutional neural network to learn deep
features from spectrograms of the acoustic signal, themethod
was reported to significantly outperform methods using
traditional audio features. Christie and Kottege presented
a real-time acoustics-based terrain classification system for
legged robot [8]. Extracting a 32-dimensional feature vector
by combining spectral and temporal features, accuracy of
92.9% was obtained, and using a noise subtraction technique
to remove servo noise, it was further increased to 95.1%. Note
that the acoustic-based method is susceptible to background
noise; however, due to the complexity and great variation in
unpredictable background noise, apart from the servo noise
subtraction method, few methods for environmental noise
have been reported. A general method to evaluate the effect
of noise on classification rate is to test the robustness of the
proposed method during exposure to different background
noises at differing levels of SNR.

In this paper, a new terrain classification framework is
presented to improve classification performance. There are
twomain contributions in our study. First, instead of extract-
ing features from a handcrafted domain, a two-stage feature

selection method combining ReliefF and mRMR algorithms
was developed to select optimal yet compact feature sub-
sets, which takes both attributes weights and redundancy
reduction into account. Moreover, the combination method
ismore computationally efficient thanmRMRworking alone.
Second, by fusing the predictions from five data sources,
a multiclassifier combination method was developed. The
predicted class is determined by integrating prior knowledge
with the current classification results. The proposed frame-
work has demonstrated promising performance.

2. Overview of the Terrain
Classification Framework

The proposed framework involves the following steps:

(1) Data collection from tracked robot-terrain interac-
tion

(2) Assigning labels to the prepared terrains
(3) Splitting the collected signal into short time windows
(4) Extracting features from each window
(5) Selecting optimal feature subsets using the two-stage

feature selection method
(6) Training a classifier using the optimal feature subsets
(7) Predicting the class labels of these short windows
(8) Determining the terrain class by fusing the predic-

tions from each classifier based on the prior knowl-
edge of each data source

A schematic overview of the framework is shown in
Figure 1.

2.1. Data Collection and Hand Labeling. In each experiment,
the tracked robot was driven over six different types of
terrain: brick (𝑆B), asphalt (𝑆A), low grass (𝑆LG), firm soil
(𝑆FS), gravel (𝑆G), and soft soil (𝑆SS), as illustrated in Figure 2.
For each type of terrain, one location was considered in
the experiment. A data acquisition instrument was used to
collect the signal. Data was recorded and transmitted to
a desktop computer via a router in a real-time manner,
and further processing was performed offline. The data was
converted intoMAT-files and processed within theMATLAB
environment. Each sequence was split into short windows of
one-second duration and all short windows were assigned a
specific class label.

2.2. Feature Extraction. Features were extracted from each
window. FFT is the most commonly used feature extrac-
tion method for acceleration and is often used to perform
transformation from time domain to frequency domain.
Moreover, it is the foundation of many other features such
as the MFCC and frequency characteristics. Thus, FFT was
chosen as a basic feature candidate for both the acoustic and
acceleration data. As the SNR is higher in regions where there
is more power, only the lower part of the spectrum was used
in this study. The truncation point was set to 200Hz.

MFCCs are perceptually based spectral features that have
been successfully used in speech recognition, which basically
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Figure 1: A flowchart of the proposed terrain classification framework.
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Figure 2: Images of the different terrains used in the experiment.

maps the linear frequency scale to a scale that resembles
the frequency resolution of the human ear [19]. Whereas
the majority of spectral power of the acoustic signal result-
ing from robot-terrain interaction ranges between 0 and
200Hz, the speech signal has more distinctive information
in the mid-to-high frequency ranges; therefore, a modified
form with greater emphasis on lower frequencies should be
developed for this application. The traditional relationship
betweenMel-frequency and normal frequency can be written
as 𝐹Mel = 2595 lg(1 + 𝑓700) 𝑓 = 0, . . . , 4000Hz, (1)

where 𝐹Mel represents the transformed frequency with the
unit Mel, 𝑓 represents the linear frequency, and 4000Hz is
the Nyquist frequency.

Transforming (1) to a more general form, it becomes

𝐹Mel = 𝐵 ∗ lg(1 + 𝑓𝑔) , (2)

where 𝐵 = 2595 and 𝑔 = 700. Substituting𝐹Mel = 2146Mel and𝑓 = 4000Hz into (2) yields

2146 = 𝐵 ∗ lg(1 + 4000𝑔 ) . (3)
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Figure 3: The classification accuracy as a function of 𝑔 and 𝐵.
The SVM and 18-dimensional MMFCCs were used to perform the
classification.

The best Mel mapping function curve can be obtained by
tuning𝐵 and𝑔. According to (3), we changed the parameter𝑔
from 10 to 1000 with an interval of 10 and then 100 parameter
sets (𝑔, 𝐵) were obtained. A tuned SVM classifier was used
to perform the classification with the MFCC feature vector.
Finally, the parameter set that delivered the best classification
performance was identified and used as the MFCC. The
classification accuracy as a function of 𝑔 and 𝐵 is shown in
Figure 3. It can be observed that best performance is achieved
when 𝐵 = 1172 and 𝑔 = 60. In this paper, 18-dimensional
modified MFCCs were used and denoted as 18-dimensional
MMFCCs.

The gianna and shape feature vector [11] is a combination
of the gianna feature [20] and shape feature [21]. The
gianna feature includes three features extracted from the time
domain (ZCR, STE, and entropy) and three features from the
frequency domain (spectral centroid, spectral roll-off, and
spectral flux). The ZCR indicates the number of times the
signal crosses the zero axis per second. The STE is the sum
of squares of the amplitudes. Abrupt energy changes in the
signal are characterized by entropy. The entropy is calculated
by 𝑈 = −∑𝑛−1𝑖=0 𝜎2 ⋅ log2(𝜎2), where 𝑛 denotes the number of
subframes that a signal frame is divided into and 𝜎 denotes
the normalized energy of a subframe. In this work, a tuned
SVM classifier was used to perform the classification with
the entropy feature extracted using 𝑛 = 1, 2, . . . , 20. Finally,
the value of 𝑛 = 10 was found to give the best performance
and subsequently was used as the entropy feature. Spectral
roll-off is a frequency value and a certain percentage of
energy lies under it. The percentage was empirically set
to be 80%. Spectral flux is used to measure local spectral
changes between successive frames and can be calculated by
summing and squaring the differences between successive
frames. The shape feature consists of four scalar features
characterizing the shape of the distribution: spectral centroid,
spectral standard deviation, spectral skewness, and kurtosis.

Compared to an acoustic signal, there are fewer feature
vectors for acceleration. As mentioned previously, FFT was
adopted as the basic feature candidate, and the truncation
point was set to 200Hz. By doing so, the lower part of
the spectrum is used, resulting in a higher SNR. Based on
FFT, five derived frequency domain indicators were calcu-
lated: MSF, RMSF, FC, RVF, and VF [22]. Eleven temporal
indicators were also extracted, including the average value,
maximum value, and RMS [23].

To summarize, each short window was taken as a dataset
and processed to extract different feature vectors.The feature
vector candidates for the acoustic set are listed as follows:

(i) 18-Dimensional MMFCCs
(ii) 200-Dimensional FFT
(iii) 9-Dimensional gianna and shape feature
(iv) 227-Dimensional feature vector formed by the above

three feature vectors

The feature vector candidates for acceleration set are listed as
follows:

(i) 11-Dimensional temporal indicators
(ii) 200-Dimensional FFT
(iii) 5-Dimensional frequency characteristics
(iv) 216-Dimensional feature vector formed by the above

three feature vectors

All features were normalized to range within [−1, 1]
before feature selection and classification. Note that all the
codes were implemented in MATLAB environment.

2.3. Feature Selection. More features can increase compu-
tation load and are also more likely to cause overfitting
of the corresponding classification model. In classification
problems, there are hundreds of potential features that can be
used to characterize a target object; however, noisy irrelevant
features provide little information and should be found and
removed. In this paper, a two-stage feature selection method
is developed combining ReliefF [24] and mRMR [25]. The
ReliefF algorithm determines the quality attributes when
there is dependency between attributes, while the mRMR
algorithmfinds attributes that hold the highest relevancewith
the target class and show maximal differentiation from each
other. Since the ReliefF algorithm is less computationally
expensive than the mRMR, it is performed in the first stage
to select feature candidates as well as reduce computation
load in the next stage. An importance value for each attribute
is calculated to rank them, and the top 100 important
attributes are selected to form a feature vector candidate.
In the second stage, the mRMR algorithm is performed to
reduce the redundancy of the feature candidates, in which
the 100 selected attributes are ranked once again and can be
selected based on the new ranking. Consequently, optimal
yet compact feature subsets can be obtained to feed into the
classification model.

The ReliefF algorithm works as follows: first, an instance𝑅𝑖 is randomly selected from the training sets; then search 𝑙



Mathematical Problems in Engineering 5

Input: feature vectors and class labels
Output: the vector 𝑊 of estimations of the importance values of attributes
set 𝑊[𝐴] fl 0;
For 𝑖 fl 1 to 𝑚 do

randomly select a set 𝑅𝑖;
search 𝑙 nearest hits 𝐻𝑗;
for each class 𝐶 ̸= class(𝑅𝑖) do

find 𝑙 nearest misses 𝑀𝑗(𝐶) from class 𝐶;
end
for 𝐴 fl 1 to 𝑎 do𝑊[𝐴] fl 𝑊[𝐴] − ∑𝑙𝑗=1 diff(𝐴, 𝑅𝑖, 𝐻𝑗)(𝑚 ⋅ 𝑙) +∑𝐶 ̸=class(𝑅𝑖)[(𝑃(𝐶)/(1 − 𝑃(class(𝑅𝑖)))) ∑𝑙𝑗=1 diff(𝐴, 𝑅𝑖,𝑀𝑗(𝐶))](𝑚 ⋅ 𝑙)
end

end

Algorithm 1: ReliefF algorithm.

nearest neighbors from the same class and each of the differ-
ent classes, which can be called nearest hits 𝐻𝑗 and nearest
misses 𝑀𝑗(𝐶). Based on 𝑅𝑖, 𝐻𝑗, and 𝑀𝑗(𝐶), the importance
estimation 𝑊[𝐴] can be updated, where 𝐴 denotes the set of
all attributes. The pseudocode is given in Algorithm 1.

Referring to the pseudocode, 𝑃(𝐶) is the prior proba-
bility of class 𝐶, estimated from the training sets. Function
diff(𝐴, 𝐼1, 𝐼2) calculates the difference between the values of
the attribute 𝐴 for two instances, 𝐼1 and 𝐼2. The variable 𝑎 is
the number of attributes in the feature vector. In this paper,𝑙 = 10 and 𝑚 = 20; both parameters are set by the users.

ThemRMR algorithm employs Max-Relevance andMin-
Redundancy criteria. Max-Relevance aims to find features
satisfying

max 𝐷 (𝑆, 𝐶) ,
𝐷 = 1|𝑆| ∑𝑥𝑖∈𝑆𝐼 (𝑥𝑖; 𝐶) , (4)

where 𝐼(𝑥𝑖; 𝐶) is the mutual information value, 𝑥𝑖 is an
individual feature, and𝐶 is the class label.𝐷 is themean value
of all mutual information values.

Features selected using Max-Relevance criteria could
have rich redundancy; therefore, Min-Redundancy is per-
formed in the next step.TheMin-Redundancy condition can
be expressed by

min 𝑅 (𝑆) ,
𝑅 = 1|𝑆|2 ∑

𝑥𝑖 ,𝑥𝑗∈𝑆

𝐼 (𝑥𝑖; 𝑥𝑗) . (5)

Finally, the two criteria can be combined by the operatorΦ(𝐷, 𝑅).
max Φ (𝐷, 𝑅)Φ = 𝐷 − 𝑅. (6)

2.4. Classification. For comparison and experimental vali-
dation, four conceptually different classifiers were used to
perform the classification.The principles of each classifier are
briefly described as follows.

(1) k-Nearest Neighbors. The kNN algorithm is perhaps the
simplest and most intuitive classifier [26]. It maintains good
performance when there are extremely irregular decision
boundaries. It is a nonparametric identification method that
does not need prior probability and conditional probability
density functions; however, it is labor-intensive for problems
with large training sets. When classifying an unknown
instance, the distance of feature vector X to all training
vectors is calculated and 𝑘 training vectors closest to X are
selected. The predicted class is then defined as the most
frequently occurring class among the 𝑘 training vectors.
Euclidean distance was utilized in this work and for feature
vectors, X1 = (𝑥11, 𝑥12, . . . , 𝑥1𝑛) and X2 = (𝑥21, 𝑥22, . . . , 𝑥2𝑛),
the Euclidean distance takes the form

dist (X1,X2) = √ 𝑛∑
𝑖=1

(𝑥1𝑖 − 𝑥2𝑖)2. (7)

(2) Naı̈ve Bayes Classifier. Due to fast and easy implementa-
tion, theNäıve Bayes classifier is widely used in pattern classi-
fication problems [27].The basic idea is to classify an instance
X to a class 𝐶𝑖 that has the highest probability considering its
corresponding attributes 𝐴 𝑖. It can be expressed as𝐶 (X) = argmaxX𝐶𝑖 . (8)

(3) Support Vector Machine. The basic idea of SVM [28] is
to construct a hyperplane to maximize the margin between
the closest points of different classes. The method is less
prone to overfitting than other methods and therefore
performs particularly well for classification problems with
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small datasets. Two parameters need to be tuned for the
SVM model, 𝐺 and 𝛾. The parameter 𝐺 is used to control
the effects of errors. Higher values of 𝐺 lead to a more
severe effect. The data is mapped into higher-dimensional
space using kernel functions, and, consequently, a nonlinear
hyperplane is constructed to separate the data linearly. In
this paper, the radial basis function 𝐾(𝑥1, 𝑥2) = exp(−‖𝑥1 −𝑥2‖2/2𝛾2) was used. The parameters 𝐺 and 𝛾 were tuned
using the grid search and cross validationmethods.The SVM
algorithmwas implemented in the LIBSVM software package
[29].

(4) Random Forests. Random forest can tackle problems with
high-dimensional feature vectors [30]. It is a combination of
tree classifiers. Each tree classifier is built by using a random
vector sampled independently from the input vector. Finally,
a unit vote is obtained from each tree classifier and the most
frequently occurring class label is determined to classify the
input vector. A random forest consists of 𝑁 tree predictors,
where 𝑁 can be set to any value; 𝑁 was empirically set to
500.

2.5. Multiclassifier Combination. As different sensors can
provide complementary information, a multiclassifier com-
bination method can be developed to improve classification
performance. Voting principles are perhaps the most gen-
eral and useful multiclassifier combination methods, aiming
to make a consensus by fusing opinions from individual
classifiers [31]. The voting principle can be expressed as
follows.

Assume that there is a pattern space 𝑃 that consists of𝑀 mutually exclusive sets: 𝑃 = 𝐶1 ∪ 𝐶2 ∪ ⋅ ⋅ ⋅ ∪ 𝐶𝑀, for𝐶𝑖2 ∀𝑖 ∈ Λ = {1, 2, . . . ,𝑀} representing classes. In this case,
six different terrains are presented; thus,𝑀 = 6. Assume that𝑥 is a sample from 𝑃; a classifier (denoted by 𝑒) is used to
assign a label 𝑗 to 𝑥, 𝑗 ∈ Λ, which means that 𝑥 belongs
to class 𝐶𝑗. The above event can be denoted by 𝑒(𝑥) = 𝑗.
Assuming 𝑉 individual classifiers 𝑒V, V = 1, . . . , 𝑉, an input
sample 𝑥 is assigned a label 𝑗V by each classifier; then an
event 𝑒V(𝑥) = 𝑗V is produced. Events are used to establish an
integrated classifier 𝐸, and, finally, a definitive label 𝑗 is given
to the input sample 𝑥; namely, 𝐸(𝑥) = 𝑗, 𝑗 ∈ Λ.

The event 𝑒V(𝑥) = 𝑖 can be expressed as

𝑇V (𝑥 ∈ 𝐶𝑖) = {{{1, when 𝑒V (𝑥) = 𝑖, 𝑖 ∈ Λ0, otherwise.
(9)

A commonly used voting rule based on majority is given
by

𝐸 (𝑥) = 𝑗,
if 𝑇𝐸 (𝑥 ∈ 𝐶𝑗) = max

𝑖∈Λ
𝑇𝐸 (𝑥 ∈ 𝐶𝑖) ≥ 𝛼 ∗ 𝑉, (10)

where 0 < 𝛼 ≤ 1.

In this study, the confusion matrix [32] was utilized to
describe the errors for each classifier 𝑒V as follows:

𝑃𝑇V = (
(

𝑛(V)11 𝑛(V)12 ⋅ ⋅ ⋅ 𝑛(V)1𝑀𝑛(V)21 𝑛(V)22... ... d𝑛(V)𝑀1 𝑛(V)𝑀2 ⋅ ⋅ ⋅ 𝑛(V)𝑀𝑀
)
)

, (11)

where V = 1, 2, . . . , 𝑉. 𝑛(V)𝑖𝑗 denotes that 𝑛(V)𝑖𝑗 samples belonging
to class 𝐶𝑖 are classified into class 𝑗 by classifier 𝑒V, where 𝑖
denotes class 𝐶𝑖 and 𝑗 denotes the event 𝑒V(𝑥) = 𝑗.

The number of test samples is given by

𝑁(V) = 𝑀∑
𝑖=1

𝑀∑
𝑗=1

𝑛(V)𝑖𝑗 . (12)

The number of samples belonging to each class 𝐶𝑖 is
𝑛(V)𝑖⋅ = 𝑀∑

𝑗=1

𝑛(V)𝑖𝑗 𝑖 = 1, . . . ,𝑀. (13)

The number of samples that are classified into class 𝑗 is
given by

𝑛(V)⋅𝑗 = 𝑀∑
𝑖=1

𝑛(V)𝑖𝑗 𝑗 = 1, . . . ,𝑀. (14)

Under the occurrence 𝑒V(𝑥) = 𝑗, the probability that a
sample comes from class 𝐶𝑖 can be given by

𝑃 (𝑥 ∈ 𝐶𝑖 | 𝑒V (𝑥) = 𝑗) = 𝑛(V)𝑖𝑗𝑛(V)𝑗 = 𝑛(V)𝑖𝑗∑𝑀𝑖=1 𝑛(V)𝑖𝑗𝑗 = 1, 2, . . . ,𝑀. (15)

The confusion matrix is believed to be able to reflect the
performance of 𝑒V. A sample confusion matrix is shown in
Figure 4. In this paper, the confusionmatrix was employed as
the prior knowledge from each data source, and each dataset
corresponds to an individual classifier; thus, the total number
of votes for class 𝐶𝑖 is given by

𝑃𝐸 (𝑥 ∈ 𝐶𝑖) = 𝑉∑
V=1

𝑃 (𝑥 ∈ 𝐶𝑖 | 𝑒V (𝑥) = 𝑗V)
𝑖 = 1, 2, . . . ,𝑀. (16)

Finally, the voting principle based on prior knowledge
takes the form𝐸 (𝑥) = 𝑗

when ∃𝑗 ∈ Λ 𝑃𝐸 (𝑥 ∈ 𝐶𝑗) = max
𝑖∈Λ

𝑃𝐸 (𝑥 ∈ 𝐶𝑖) . (17)
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Figure 4: Confusion matrix for six-class terrain classification using
SVM classifier and 18-dimensional MMFCC at speed of 2m/s. The
terrain representations: 𝑆B: brick, 𝑆A: asphalt, 𝑆LG: low grass, 𝑆FS: firm
soil, 𝑆G: gravel, and 𝑆SS: soft soil.

3. Experimental System

A data acquisition system was proposed to record signals,
which consisted of a data acquisition instrument (24-bit),
router, computer, and three different sensors, as shown in
Figure 5.

The acoustic signal was measured using an acoustic
pressure sensor placed close to the first road wheel. To reduce
the influence of background noise, it was pointed downward
perpendicular to ground surface. For shock absorption, a
bracket and damping foam block were used. A single-axis
accelerometer was mounted on the axis of the first road
wheel to collect acceleration data along vertical direction.
Vibrations induced in the centroid position of the robot were
measured by a triaxial accelerometer along three perpendic-
ular directions, as depicted by the coordinate system shown
in Figure 6. It was mounted on the bottom of robot. As
shown in Figure 6, the instrumented robot has dimension of
1.3m × 0.75m × 0.38m and weight of approximately 75 kg.
Similar studies have demonstrated that driving speeds can
significantly affect the generation of sound and vibration.
Here, a wireless joystick was used to roughlymaintain control
of the speed and 3 different speeds were considered: 0.4m/s,
0.8m/s, and 2m/s. In the experiments, the sampling rates for
the acoustic and acceleration signals were set to 8 kHz and
1 kHz, respectively.

To preserve symmetry, 80 samples were chosen for each
class, such that a total of 480 samples were obtained. Prepared
samples were separated into two sets of equal numbers,
namely, the training sets and testing sets. Representative
examples of the signal token from five data sources at
2m/s are presented in Figure 7. The horizontal axis on top
represents the six different types of terrains. Each terrain
type was sampled for a duration of 2 seconds and is shown
separated by a dotted line.

4. Results and Discussion

The results of each trial generated a confusion matrix as
depicted in Figure 4. For compactness, each confusionmatrix

is condensed into a single number, called the accuracy [33].
The accuracy can be calculated by averaging the true positive
rates across six classes and, in this paper, it was employed
as the measure of performance. Results obtained using the
individual data source and handcrafted feature vector at 2m/s
are listed in Table 1.

For the acoustic-basedmethod, accuracies between 53.8%
and 89.6%were achieved.The best result in terms of accuracy
was obtained using MMFCC and SVM, whereas the worst
result was observed using gianna and shape and kNN.
Interestingly, the results obtained for gianna and shape in
this study are contrary to the conclusions reported in [11], in
which a wheeled robot was used. In this study, the structural
noise resulting from the track system vibration is believed
to be the cause of these differences because structural noise
can behave differently to the robot-terrain interaction sound.
On the other hand, a wheeled robot would not produce
as much structural noise as a tracked robot. Therefore, we
believe it is reasonable that the gianna and shape features
did not perform as well in the previous paper. Nonetheless,
structural noise can also be considered as part of the robot-
terrain interaction sound because the terrain being traversed
causes track system vibrations. Considering all the classifiers,
MMFCC outperforms the other two feature vectors. Using
the acceleration-basedmethod, FFTwas better than the other
two feature vectors in terms of performance. The best result
was given by 𝐶𝑋 data source, FFT, and SVM. Due to poor
performance, temporal and frequency characteristics features
were removed from further experiments.

Referring to Table 1, for each classifier, the confusion
matrices corresponding to the highest accuracy of each data
source are employed as prior knowledge, as shown in Figures
4 and 8. It can be observed that different data sources have
different distributions for the six terrains. Consequently, it is
reasonable to believe that different data sources can comple-
ment each other and improve classification performance.

Figure 9 shows classification accuracies obtained using
the proposed framework as a function of the number of
optimal features. Based on the results, better performance is
more likely to be achieved at higher speeds. When travelling
at higher speeds, the robot can generate stronger interactions
with the terrain, which results in acoustic and acceleration
signals of higher magnitudes. The signals in turn lead to
clearer terrain signatures. In addition, since the window size
is constant for different speeds, a higher speed leads to a
longer travel distance such that a larger amount of infor-
mation is captured. Representative signal tokens at different
speeds are shown in Figure 10.

From the classifier standpoint, SVM and RF clearly
outperformed the other two simple classifiers; however, it
should be pointed out that they are relatively computationally
expensive. The highest accuracy of 99.6% was achieved using
RF with 90 and 100 optimal features at 2m/s. Additionally,
accuracies given by RF at 0.8m/s were above 95%, except for
the trial with 10 optimal features. However, when traversing
at 0.4m/s, all the accuracies given by SVM were beyond
85% except for the trial with 10 optimal features, while
most of the accuracies given by RF are lower than 85%.
The worst performance was given by kNN with no accuracy
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Figure 6: The instrumented tracked robot.
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Figure 8: The confusion matrices obtained with SVM at 2m/s: (a) confusion matrix of𝑊𝑍 with FFT and SVM; (b) confusion matrix of 𝐶𝑋
with FFT and SVM; (c) confusion matrix of 𝐶𝑌 with FFT and SVM; and (d) confusion matrix of 𝐶𝑍 with FFT and SVM. They are used as
prior knowledge for each data source when the speed is 2m/s and SVM is used.

beyond 95%. Moreover, most of the accuracies at 0.4m/s
drop below 80%. The results given by NB presented the least
fluctuation in response to the number of optimal features.
The ranges of accuracies at the three different speeds were
95.4%∼97.5%, 87.1%∼91.3%, and 77.5%∼82.5%. The margins
between the accuracies at different speeds are large and very
clear. In conclusion, more optimal features do not always give
better accuracy, which indicates that the most useful features
should be determined in order to improve classification
performance.

Tables 2–4 show the degrees of improvementsmade using
the proposed framework. Based on the excellent performance
values given by MMFCC and FFT, in the future they will
be adopted as the benchmark feature vectors for acoustic
and vibration-based methods, respectively. In this study, the
classification performance of all classifiers was improved.
Moreover, greater improvements were achieved for the robot
traversing at lower speeds. As explained previously, signals
collected at lower speeds have lower magnitudes, and, conse-
quently, the corresponding terrain signatures are more likely
to be affected by noise. Nonetheless, in comparison with
the traditional methods, our proposed terrain classification

framework succeeded in digging out discriminative informa-
tion hidden in weak signals.

The purpose of terrain classification is to improve robot
control and thus, in addition to classification accuracy,
the classification time is another important factor used to
guarantee real-time implementation. Generally speaking,
algorithms resulting in faster classification times are believed
to be better for running online. Figure 11 compares the
classification times of the four different classifiers on a single
sample, measured on a computer with an Intel Core i5-
6300HQ CPU and 3.89GB RAM.The classification times are
the average values of 10 runs for each classifier. It can be
observed that classification times increase approximately lin-
early with the number of optimal features. The classification
times obtained with NB increase more rapidly with optimal
features number than for other classifiers, followed by kNN,
SVM, and RF. From the standpoint of classification time,
this study suggests that SVM is the best approach. However,
the training times required by SVM can be up to several
minutes, because the grid search method used to tune the
parameters is quite time-consuming. Although the training
can be done offline and is less important than classification
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Figure 9: Accuracies obtained using the proposed terrain classification framework as a function of number of optimal features: (a) Accuracies
of SVM; (b) accuracies of RF; (c) accuracies of kNN; and (d) accuracies of NB. The horizontal axis indicates the number of selected optimal
features (dimension of optimal feature vector). The accuracies were measured for three different driving speeds.

time, it should also be considered. For larger training sets,
the hours or even days of training time required by SVM
would be unacceptable. While RF also suffers from long
training times, it is hundredfold faster than SVM during the
training phase but hundredfold slower than NB. Differing
from other classifiers, kNNmust use each training sample for
online classifications and thus its classification time largely
depends on the size of training set. For large training sets,
kNN can become too slow to implement online. When there
are less than 30 optimal features, NB performs better than

kNN and RF in terms of classification time. In general, it is
hard to determine which algorithm is the best in terms of
computation time, because it is affected by several factors
such as the size of the training set, optimal features number,
and offline training time.

5. Conclusions

In this paper, a new terrain classification framework was pre-
sented.The experimentswere carried outwith a tracked robot
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Figure 10: Representative signal tokens at three different speeds from (a) data source of 𝑆 and (b) data source of 𝑊𝑍.
on six different terrains. Multiple sensors were employed to
collect signals, and in total five data sources were used. A
two-stage feature selection method was proposed to obtain
optimal feature subsets, and a multiclassifier combination
method considering prior knowledge was developed. Finally,
four conceptually different classifiers were employed to per-
form the classification.

The results showed that the new framework successfully
improves classification performance with optimal feature
subsets when different classifiers are used. Only a small
number of features effectively contribute to classification,
which demonstrates the necessity of the feature selection
operation. Different distributions of the confusion matrices
resulting from five data sources revealed that complementary
information can be obtained from the classifier combination.
In addition, greater improvements are achieved for signals
collected at lower speeds, which means that our approach
can successfully dig out discriminative information hidden in
the weak signals. Additionally, the accuracies tend to increase

at higher speeds, as higher speeds lead to stronger signals
and longer travel distances. For real-time properties, the
classification times increase approximately linearly with the
number of optimal features. Since the computation time is
affected by several factors such as the size of the training
set, optimal features number, and offline training time, it
is difficult to determine the best algorithm in relation to
computation time. In this study, the SVMwas found to be the
best approach in terms of classification time. In comparison
to traditional methods, this work suggests that the new
framework could handle more complex terrain and increase
the probability of detecting danger in advance due to the
presence of the acoustic modality. Another advantage is that
the proprioceptive sensors used in this study cost much less
than tactile sensors, cameras, and LADARs. In future studies,
additional types of hazards such as marshland, desert, and
stream should be considered. To provide further variation,
different locations should be considered within each terrain
type.
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Table 1: Accuracies with individual data source and handcrafted feature vector at 2m/s.

Data source Feature vector SVM RF kNN NB

Acoustics (𝑆) MMFCC 89.6% 87.1% 80.8% 77.9%
FFT 82.9% 70% 56.7% 55.4%

Gianna and shape 58.8% 67.9% 53.8% 64.2%

Wheel vibration (𝑊𝑍) Temporal 68.3% 62.5% 62.1% 56.3%
FFT 90.4% 89.2% 75.4% 84.6%

Frequency characteristics 59.6% 64.2% 62.5% 51.7%

Centroid vibration 𝑋-Axes (𝐶𝑋) Temporal 41.7% 52.9% 51.3% 47.5%
FFT 94.2% 92.9% 72.1% 88.3%

Frequency characteristics 46.7% 54.2% 47.1% 44.2%

Centroid vibration 𝑌-Axes (𝐶𝑌) Temporal 42.5% 44.2% 50% 46.7%
FFT 92.1% 93% 91.3% 88.2%

Frequency characteristics 44.6% 44.6% 46.7% 45.1%

Centroid vibration 𝑍-Axes (𝐶𝑍) Temporal 44.2% 46.3% 50% 45.5%
FFT 93.3% 92.9% 91.3% 90.8%

Frequency characteristics 42.5% 48.3% 46.7% 42.5%

Table 2: Comparison of the proposed terrain classification framework with traditional method on benchmark feature vectors. MMFCC
and FFT are adopted as benchmark feature vectors for acoustics and acceleration data sources, respectively. The driving speed is 2m/s. The
number in brackets is the dimensionality of the optimal feature subset corresponding to the best result.

Data source Feature vector SVM RF kNN NB𝑆 MMFCC (18D) 89.6% 87.1% 80.8% 77.9%𝑊𝑍 FFT (200D) 90.4% 89.17% 75.42% 84.6%𝐶𝑋 FFT (200D) 94.2% 92.92% 72.08% 88.3%𝐶𝑌 FFT (200D) 92.1% 92.95% 91.3% 88.2%𝐶𝑍 FFT (200D) 93.3% 92.92% 91.3% 90.8%
Proposed framework 97.9% (80D) 99.6% (90D) 95% (50D) 97.5% (100D)

Table 3: Comparison of the proposed terrain classification framework with traditional method on benchmark feature vectors. MMFCC and
FFT are adopted as benchmark feature vectors for acoustics and acceleration data sources, respectively. The driving speed is 0.8m/s. The
number in brackets is the dimensionality of the optimal feature subset corresponding to the best result.

Data source Feature vector SVM RF kNN NB𝑆 MMFCC (18D) 76.7% 75% 67.5% 72.1%𝑊𝑍 FFT (200D) 80% 82.5% 76% 75.8%𝐶𝑋 FFT (200D) 82.5% 82.9% 76.3% 76.3%𝐶𝑌 FFT (200D) 87.5% 89.2% 79.6% 79.6%𝐶𝑍 FFT (200D) 88.3% 85.4% 80% 80%
Proposed framework 97.1% (30D) 97.5% (50D) 92.1% (30D) 91.3% (30D)

Table 4: Comparison of the proposed terrain classification framework with traditional method on benchmark feature vectors. MMFCC and
FFT are adopted as benchmark feature vectors for acoustics and acceleration data sources, respectively. The driving speed is 0.4m/s. The
number in brackets is the dimensionality of the optimal feature subset corresponding to the best result.

Data source Feature vector SVM RF kNN NB𝑆 MMFCC (18D) 74.2% 67.9% 62.5% 68.3%𝑊𝑍 FFT (200D) 80% 63% 76% 53.8%𝐶𝑋 FFT (200D) 69.2% 69.2% 76.3% 60.8%𝐶𝑌 FFT (200D) 82.5% 79.6% 79.6% 70%𝐶𝑍 FFT (200D) 83.8% 80% 80% 73.3%
Proposed framework 92.1% (40D) 86.3% (50D) 81.7% (60D) 82.9% (30D)
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Acronyms

LADAR: LAser Detection And Ranging
PSD: Power spectral density
PCA: Principal component analysis
FFT: Fast Fourier transform
SVM: Support vector machine
PNN: Probabilistic neural network𝑘NN: 𝑘-Nearest neighbors
NB: Näıve Bayes
SNR: Signal-to-noise ratio
mRMR: Minimal-redundancy-maximal-relevance
MFCC: Mel-frequency cepstrum coefficient
MMFCC: Modified Mel-frequency cepstrum coefficient
ZCR: Zero crossing rate
STE: Short time energy
MSF: Mean square frequency
RMSF: Root mean square frequency
FC: Frequency center
RVF: Root variance frequency
VF: Variance frequency
RMS: Root mean square
LIBSVM: Library for support vector machines
RF: Random forests.
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