2 research outputs found

    Deep feature fusion via two-stream convolutional neural network for hyperspectral image classification

    Get PDF
    The representation power of convolutional neural network (CNN) models for hyperspectral image (HSI) analysis is in practice limited by the available amount of the labeled samples, which is often insufficient to sustain deep networks with many parameters. We propose a novel approach to boost the network representation power with a two-stream 2-D CNN architecture. The proposed method extracts simultaneously, the spectral features and local spatial and global spatial features, with two 2-D CNN networks and makes use of channel correlations to identify the most informative features. Moreover, we propose a layer-specific regularization and a smooth normalization fusion scheme to adaptively learn the fusion weights for the spectral-spatial features from the two parallel streams. An important asset of our model is the simultaneous training of the feature extraction, fusion, and classification processes with the same cost function. Experimental results on several hyperspectral data sets demonstrate the efficacy of the proposed method compared with the state-of-the-art methods in the field

    Spectral feature fusion networks with dual attention for hyperspectral image classification

    Get PDF
    Recent progress in spectral classification is largely attributed to the use of convolutional neural networks (CNN). While a variety of successful architectures have been proposed, they all extract spectral features from various portions of adjacent spectral bands. In this paper, we take a different approach and develop a deep spectral feature fusion method, which extracts both local and interlocal spectral features, capturing thus also the correlations among non-adjacent bands. To our knowledge, this is the first reported deep spectral feature fusion method. Our model is a two-stream architecture, where an intergroup and a groupwise spectral classifiers operate in parallel. The interlocal spectral correlation feature extraction is achieved elegantly, by reshaping the input spectral vectors to form the socalled non-adjacent spectral matrices. We introduce the concept of groupwise band convolution to enable efficient extraction of discriminative local features with multiple kernels adopting to the local spectral content. Another important contribution of this work is a novel dual-channel attention mechanism to identify the most informative spectral features. The model is trained in an end-to-end fashion with a joint loss. Experimental results on real data sets demonstrate excellent performance compared to the current state-of-the-art
    corecore