49,863 research outputs found

    Entity matching with transformer architectures - a step forward in data integration

    Get PDF
    Transformer architectures have proven to be very effective and provide state-of-the-art results in many natural language tasks. The attention-based architecture in combination with pre-training on large amounts of text lead to the recent breakthrough and a variety of slightly different implementations. In this paper we analyze how well four of the most recent attention-based transformer architectures (BERT, XLNet, RoBERTa and DistilBERT) perform on the task of entity matching - a crucial part of data integration. Entity matching (EM) is the task of finding data instances that refer to the same real-world entity. It is a challenging task if the data instances consist of long textual data or if the data instances are "dirty" due to misplaced values. To evaluate the capability of transformer architectures and transfer-learning on the task of EM, we empirically compare the four approaches on inherently difficult data sets. We show that transformer architectures outperform classical deep learning methods in EM by an average margin of 27.5%

    Neural Networks for Information Retrieval

    Get PDF
    Machine learning plays a role in many aspects of modern IR systems, and deep learning is applied in all of them. The fast pace of modern-day research has given rise to many different approaches for many different IR problems. The amount of information available can be overwhelming both for junior students and for experienced researchers looking for new research topics and directions. Additionally, it is interesting to see what key insights into IR problems the new technologies are able to give us. The aim of this full-day tutorial is to give a clear overview of current tried-and-trusted neural methods in IR and how they benefit IR research. It covers key architectures, as well as the most promising future directions.Comment: Overview of full-day tutorial at SIGIR 201

    One-Shot Relational Learning for Knowledge Graphs

    Full text link
    Knowledge graphs (KGs) are the key components of various natural language processing applications. To further expand KGs' coverage, previous studies on knowledge graph completion usually require a large number of training instances for each relation. However, we observe that long-tail relations are actually more common in KGs and those newly added relations often do not have many known triples for training. In this work, we aim at predicting new facts under a challenging setting where only one training instance is available. We propose a one-shot relational learning framework, which utilizes the knowledge extracted by embedding models and learns a matching metric by considering both the learned embeddings and one-hop graph structures. Empirically, our model yields considerable performance improvements over existing embedding models, and also eliminates the need of re-training the embedding models when dealing with newly added relations.Comment: EMNLP 201

    Improved Neural Relation Detection for Knowledge Base Question Answering

    Full text link
    Relation detection is a core component for many NLP applications including Knowledge Base Question Answering (KBQA). In this paper, we propose a hierarchical recurrent neural network enhanced by residual learning that detects KB relations given an input question. Our method uses deep residual bidirectional LSTMs to compare questions and relation names via different hierarchies of abstraction. Additionally, we propose a simple KBQA system that integrates entity linking and our proposed relation detector to enable one enhance another. Experimental results evidence that our approach achieves not only outstanding relation detection performance, but more importantly, it helps our KBQA system to achieve state-of-the-art accuracy for both single-relation (SimpleQuestions) and multi-relation (WebQSP) QA benchmarks.Comment: Accepted by ACL 2017 (updated for camera-ready
    • …
    corecore