30 research outputs found

    Deep Domain-Adversarial Image Generation for Domain Generalisation

    Get PDF
    Machine learning models typically suffer from the domain shift problem when trained on a source dataset and evaluated on a target dataset of different distribution. To overcome this problem, domain generalisation (DG) methods aim to leverage data from multiple source domains so that a trained model can generalise to unseen domains. In this paper, we propose a novel DG approach based on \emph{Deep Domain-Adversarial Image Generation} (DDAIG). Specifically, DDAIG consists of three components, namely a label classifier, a domain classifier and a domain transformation network (DoTNet). The goal for DoTNet is to map the source training data to unseen domains. This is achieved by having a learning objective formulated to ensure that the generated data can be correctly classified by the label classifier while fooling the domain classifier. By augmenting the source training data with the generated unseen domain data, we can make the label classifier more robust to unknown domain changes. Extensive experiments on four DG datasets demonstrate the effectiveness of our approach.Comment: 8 page

    Rethinking Domain Generalization Baselines

    Get PDF
    Despite being very powerful in standard learning settings, deep learning models can be extremely brittle when deployed in scenarios different from those on which they were trained. Domain generalization methods investigate this problem and data augmentation strategies have shown to be helpful tools to increase data variability, supporting model robustness across domains. In our work we focus on style transfer data augmentation and we present how it can be implemented with a simple and inexpensive strategy to improve generalization. Moreover, we analyze the behavior of current state of the art domain generalization methods when integrated with this augmentation solution: our thorough experimental evaluation shows that their original effect almost always disappears with respect to the augmented baseline. This issue open new scenarios for domain generalization research, highlighting the need of novel methods properly able to take advantage of the introduced data variability

    Domain Similarity-Perceived Label Assignment for Domain Generalized Underwater Object Detection

    Full text link
    The inherent characteristics and light fluctuations of water bodies give rise to the huge difference between different layers and regions in underwater environments. When the test set is collected in a different marine area from the training set, the issue of domain shift emerges, significantly compromising the model's ability to generalize. The Domain Adversarial Learning (DAL) training strategy has been previously utilized to tackle such challenges. However, DAL heavily depends on manually one-hot domain labels, which implies no difference among the samples in the same domain. Such an assumption results in the instability of DAL. This paper introduces the concept of Domain Similarity-Perceived Label Assignment (DSP). The domain label for each image is regarded as its similarity to the specified domains. Through domain-specific data augmentation techniques, we achieved state-of-the-art results on the underwater cross-domain object detection benchmark S-UODAC2020. Furthermore, we validated the effectiveness of our method in the Cityscapes dataset.Comment: 10 pages,7 figure

    Privacy-Preserving Constrained Domain Generalization via Gradient Alignment

    Full text link
    Deep neural networks (DNN) have demonstrated unprecedented success for medical imaging applications. However, due to the issue of limited dataset availability and the strict legal and ethical requirements for patient privacy protection, the broad applications of medical imaging classification driven by DNN with large-scale training data have been largely hindered. For example, when training the DNN from one domain (e.g., with data only from one hospital), the generalization capability to another domain (e.g., data from another hospital) could be largely lacking. In this paper, we aim to tackle this problem by developing the privacy-preserving constrained domain generalization method, aiming to improve the generalization capability under the privacy-preserving condition. In particular, We propose to improve the information aggregation process on the centralized server-side with a novel gradient alignment loss, expecting that the trained model can be better generalized to the "unseen" but related medical images. The rationale and effectiveness of our proposed method can be explained by connecting our proposed method with the Maximum Mean Discrepancy (MMD) which has been widely adopted as the distribution distance measurement. Experimental results on two challenging medical imaging classification tasks indicate that our method can achieve better cross-domain generalization capability compared to the state-of-the-art federated learning methods

    Discovery of New Multi-Level Features for Domain Generalization via Knowledge Corruption

    Full text link
    Machine learning models that can generalize to unseen domains are essential when applied in real-world scenarios involving strong domain shifts. We address the challenging domain generalization (DG) problem, where a model trained on a set of source domains is expected to generalize well in unseen domains without any exposure to their data. The main challenge of DG is that the features learned from the source domains are not necessarily present in the unseen target domains, leading to performance deterioration. We assume that learning a richer set of features is crucial to improve the transfer to a wider set of unknown domains. For this reason, we propose COLUMBUS, a method that enforces new feature discovery via a targeted corruption of the most relevant input and multi-level representations of the data. We conduct an extensive empirical evaluation to demonstrate the effectiveness of the proposed approach which achieves new state-of-the-art results by outperforming 18 DG algorithms on multiple DG benchmark datasets in the DomainBed framework.Comment: Accepted at AAAI 2022 (AIBSD Workshop) and ICPR 202

    TFS-ViT: Token-Level Feature Stylization for Domain Generalization

    Full text link
    Standard deep learning models such as convolutional neural networks (CNNs) lack the ability of generalizing to domains which have not been seen during training. This problem is mainly due to the common but often wrong assumption of such models that the source and target data come from the same i.i.d. distribution. Recently, Vision Transformers (ViTs) have shown outstanding performance for a broad range of computer vision tasks. However, very few studies have investigated their ability to generalize to new domains. This paper presents a first Token-level Feature Stylization (TFS-ViT) approach for domain generalization, which improves the performance of ViTs to unseen data by synthesizing new domains. Our approach transforms token features by mixing the normalization statistics of images from different domains. We further improve this approach with a novel strategy for attention-aware stylization, which uses the attention maps of class (CLS) tokens to compute and mix normalization statistics of tokens corresponding to different image regions. The proposed method is flexible to the choice of backbone model and can be easily applied to any ViT-based architecture with a negligible increase in computational complexity. Comprehensive experiments show that our approach is able to achieve state-of-the-art performance on five challenging benchmarks for domain generalization, and demonstrate its ability to deal with different types of domain shifts. The implementation is available at: https://github.com/Mehrdad-Noori/TFS-ViT_Token-level_Feature_Stylization

    Neuron Coverage-Guided Domain Generalization

    Full text link
    This paper focuses on the domain generalization task where domain knowledge is unavailable, and even worse, only samples from a single domain can be utilized during training. Our motivation originates from the recent progresses in deep neural network (DNN) testing, which has shown that maximizing neuron coverage of DNN can help to explore possible defects of DNN (i.e., misclassification). More specifically, by treating the DNN as a program and each neuron as a functional point of the code, during the network training we aim to improve the generalization capability by maximizing the neuron coverage of DNN with the gradient similarity regularization between the original and augmented samples. As such, the decision behavior of the DNN is optimized, avoiding the arbitrary neurons that are deleterious for the unseen samples, and leading to the trained DNN that can be better generalized to out-of-distribution samples. Extensive studies on various domain generalization tasks based on both single and multiple domain(s) setting demonstrate the effectiveness of our proposed approach compared with state-of-the-art baseline methods. We also analyze our method by conducting visualization based on network dissection. The results further provide useful evidence on the rationality and effectiveness of our approach
    corecore