553 research outputs found

    Learning Counterfactual Representations for Estimating Individual Dose-Response Curves

    Full text link
    Estimating what would be an individual's potential response to varying levels of exposure to a treatment is of high practical relevance for several important fields, such as healthcare, economics and public policy. However, existing methods for learning to estimate counterfactual outcomes from observational data are either focused on estimating average dose-response curves, or limited to settings with only two treatments that do not have an associated dosage parameter. Here, we present a novel machine-learning approach towards learning counterfactual representations for estimating individual dose-response curves for any number of treatments with continuous dosage parameters with neural networks. Building on the established potential outcomes framework, we introduce performance metrics, model selection criteria, model architectures, and open benchmarks for estimating individual dose-response curves. Our experiments show that the methods developed in this work set a new state-of-the-art in estimating individual dose-response

    Estimating average causal effects from patient trajectories

    Full text link
    In medical practice, treatments are selected based on the expected causal effects on patient outcomes. Here, the gold standard for estimating causal effects are randomized controlled trials; however, such trials are costly and sometimes even unethical. Instead, medical practice is increasingly interested in estimating causal effects among patient (sub)groups from electronic health records, that is, observational data. In this paper, we aim at estimating the average causal effect (ACE) from observational data (patient trajectories) that are collected over time. For this, we propose DeepACE: an end-to-end deep learning model. DeepACE leverages the iterative G-computation formula to adjust for the bias induced by time-varying confounders. Moreover, we develop a novel sequential targeting procedure which ensures that DeepACE has favorable theoretical properties, i.e., is doubly robust and asymptotically efficient. To the best of our knowledge, this is the first work that proposes an end-to-end deep learning model tailored for estimating time-varying ACEs. We compare DeepACE in an extensive number of experiments, confirming that it achieves state-of-the-art performance. We further provide a case study for patients suffering from low back pain to demonstrate that DeepACE generates important and meaningful findings for clinical practice. Our work enables practitioners to develop effective treatment recommendations based on population effects.Comment: Accepted at AAAI 202

    Deep Causal Learning: Representation, Discovery and Inference

    Full text link
    Causal learning has attracted much attention in recent years because causality reveals the essential relationship between things and indicates how the world progresses. However, there are many problems and bottlenecks in traditional causal learning methods, such as high-dimensional unstructured variables, combinatorial optimization problems, unknown intervention, unobserved confounders, selection bias and estimation bias. Deep causal learning, that is, causal learning based on deep neural networks, brings new insights for addressing these problems. While many deep learning-based causal discovery and causal inference methods have been proposed, there is a lack of reviews exploring the internal mechanism of deep learning to improve causal learning. In this article, we comprehensively review how deep learning can contribute to causal learning by addressing conventional challenges from three aspects: representation, discovery, and inference. We point out that deep causal learning is important for the theoretical extension and application expansion of causal science and is also an indispensable part of general artificial intelligence. We conclude the article with a summary of open issues and potential directions for future work

    Cascade Model-based Propensity Estimation for Counterfactual Learning to Rank

    Get PDF
    Unbiased CLTR requires click propensities to compensate for the difference between user clicks and true relevance of search results via IPS. Current propensity estimation methods assume that user click behavior follows the PBM and estimate click propensities based on this assumption. However, in reality, user clicks often follow the CM, where users scan search results from top to bottom and where each next click depends on the previous one. In this cascade scenario, PBM-based estimates of propensities are not accurate, which, in turn, hurts CLTR performance. In this paper, we propose a propensity estimation method for the cascade scenario, called CM-IPS. We show that CM-IPS keeps CLTR performance close to the full-information performance in case the user clicks follow the CM, while PBM-based CLTR has a significant gap towards the full-information. The opposite is true if the user clicks follow PBM instead of the CM. Finally, we suggest a way to select between CM- and PBM-based propensity estimation methods based on historical user clicks.Comment: 4 pages, 2 figures, 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '20
    • …
    corecore