22 research outputs found

    Eventness: Object Detection on Spectrograms for Temporal Localization of Audio Events

    Full text link
    In this paper, we introduce the concept of Eventness for audio event detection, which can, in part, be thought of as an analogue to Objectness from computer vision. The key observation behind the eventness concept is that audio events reveal themselves as 2-dimensional time-frequency patterns with specific textures and geometric structures in spectrograms. These time-frequency patterns can then be viewed analogously to objects occurring in natural images (with the exception that scaling and rotation invariance properties do not apply). With this key observation in mind, we pose the problem of detecting monophonic or polyphonic audio events as an equivalent visual object(s) detection problem under partial occlusion and clutter in spectrograms. We adapt a state-of-the-art visual object detection model to evaluate the audio event detection task on publicly available datasets. The proposed network has comparable results with a state-of-the-art baseline and is more robust on minority events. Provided large-scale datasets, we hope that our proposed conceptual model of eventness will be beneficial to the audio signal processing community towards improving performance of audio event detection.Comment: 5 pages, 3 figures, accepted to ICASSP 201

    CNN Architectures for Large-Scale Audio Classification

    Full text link
    Convolutional Neural Networks (CNNs) have proven very effective in image classification and show promise for audio. We use various CNN architectures to classify the soundtracks of a dataset of 70M training videos (5.24 million hours) with 30,871 video-level labels. We examine fully connected Deep Neural Networks (DNNs), AlexNet [1], VGG [2], Inception [3], and ResNet [4]. We investigate varying the size of both training set and label vocabulary, finding that analogs of the CNNs used in image classification do well on our audio classification task, and larger training and label sets help up to a point. A model using embeddings from these classifiers does much better than raw features on the Audio Set [5] Acoustic Event Detection (AED) classification task.Comment: Accepted for publication at ICASSP 2017 Changes: Added definitions of mAP, AUC, and d-prime. Updated mAP/AUC/d-prime numbers for Audio Set based on changes of latest Audio Set revision. Changed wording to fit 4 page limit with new addition

    Multi-scale Multi-band DenseNets for Audio Source Separation

    Full text link
    This paper deals with the problem of audio source separation. To handle the complex and ill-posed nature of the problems of audio source separation, the current state-of-the-art approaches employ deep neural networks to obtain instrumental spectra from a mixture. In this study, we propose a novel network architecture that extends the recently developed densely connected convolutional network (DenseNet), which has shown excellent results on image classification tasks. To deal with the specific problem of audio source separation, an up-sampling layer, block skip connection and band-dedicated dense blocks are incorporated on top of DenseNet. The proposed approach takes advantage of long contextual information and outperforms state-of-the-art results on SiSEC 2016 competition by a large margin in terms of signal-to-distortion ratio. Moreover, the proposed architecture requires significantly fewer parameters and considerably less training time compared with other methods.Comment: to appear at WASPAA 201

    Unsupervised Learning of Semantic Audio Representations

    Full text link
    Even in the absence of any explicit semantic annotation, vast collections of audio recordings provide valuable information for learning the categorical structure of sounds. We consider several class-agnostic semantic constraints that apply to unlabeled nonspeech audio: (i) noise and translations in time do not change the underlying sound category, (ii) a mixture of two sound events inherits the categories of the constituents, and (iii) the categories of events in close temporal proximity are likely to be the same or related. Without labels to ground them, these constraints are incompatible with classification loss functions. However, they may still be leveraged to identify geometric inequalities needed for triplet loss-based training of convolutional neural networks. The result is low-dimensional embeddings of the input spectrograms that recover 41% and 84% of the performance of their fully-supervised counterparts when applied to downstream query-by-example sound retrieval and sound event classification tasks, respectively. Moreover, in limited-supervision settings, our unsupervised embeddings double the state-of-the-art classification performance.Comment: Submitted to ICASSP 201

    Audiogmenter: a MATLAB Toolbox for Audio Data Augmentation

    Get PDF
    Audio data augmentation is a key step in training deep neural networks for solving audio classification tasks. In this paper, we introduce Audiogmenter, a novel audio data augmentation library in MATLAB. We provide 15 different augmentation algorithms for raw audio data and 8 for spectrograms. We efficiently implemented several augmentation techniques whose usefulness has been extensively proved in the literature. To the best of our knowledge, this is the largest MATLAB audio data augmentation library freely available. We validate the efficiency of our algorithms evaluating them on the ESC-50 dataset. The toolbox and its documentation can be downloaded at https://github.com/LorisNanni/Audiogmenter
    corecore