704 research outputs found

    Socializing the Semantic Gap: A Comparative Survey on Image Tag Assignment, Refinement and Retrieval

    Get PDF
    Where previous reviews on content-based image retrieval emphasize on what can be seen in an image to bridge the semantic gap, this survey considers what people tag about an image. A comprehensive treatise of three closely linked problems, i.e., image tag assignment, refinement, and tag-based image retrieval is presented. While existing works vary in terms of their targeted tasks and methodology, they rely on the key functionality of tag relevance, i.e. estimating the relevance of a specific tag with respect to the visual content of a given image and its social context. By analyzing what information a specific method exploits to construct its tag relevance function and how such information is exploited, this paper introduces a taxonomy to structure the growing literature, understand the ingredients of the main works, clarify their connections and difference, and recognize their merits and limitations. For a head-to-head comparison between the state-of-the-art, a new experimental protocol is presented, with training sets containing 10k, 100k and 1m images and an evaluation on three test sets, contributed by various research groups. Eleven representative works are implemented and evaluated. Putting all this together, the survey aims to provide an overview of the past and foster progress for the near future.Comment: to appear in ACM Computing Survey

    Visual Understanding via Multi-Feature Shared Learning with Global Consistency

    Full text link
    Image/video data is usually represented with multiple visual features. Fusion of multi-source information for establishing the attributes has been widely recognized. Multi-feature visual recognition has recently received much attention in multimedia applications. This paper studies visual understanding via a newly proposed l_2-norm based multi-feature shared learning framework, which can simultaneously learn a global label matrix and multiple sub-classifiers with the labeled multi-feature data. Additionally, a group graph manifold regularizer composed of the Laplacian and Hessian graph is proposed for better preserving the manifold structure of each feature, such that the label prediction power is much improved through the semi-supervised learning with global label consistency. For convenience, we call the proposed approach Global-Label-Consistent Classifier (GLCC). The merits of the proposed method include: 1) the manifold structure information of each feature is exploited in learning, resulting in a more faithful classification owing to the global label consistency; 2) a group graph manifold regularizer based on the Laplacian and Hessian regularization is constructed; 3) an efficient alternative optimization method is introduced as a fast solver owing to the convex sub-problems. Experiments on several benchmark visual datasets for multimedia understanding, such as the 17-category Oxford Flower dataset, the challenging 101-category Caltech dataset, the YouTube & Consumer Videos dataset and the large-scale NUS-WIDE dataset, demonstrate that the proposed approach compares favorably with the state-of-the-art algorithms. An extensive experiment on the deep convolutional activation features also show the effectiveness of the proposed approach. The code is available on http://www.escience.cn/people/lei/index.htmlComment: 13 pages,6 figures, this paper is accepted for publication in IEEE Transactions on Multimedi
    corecore